Skip to content

ENH: Implement FloatingArray reductions #36778

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Oct 3, 2020
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions pandas/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -1063,6 +1063,17 @@ def any_nullable_int_dtype(request):
return request.param


@pytest.fixture(params=tm.FLOAT_EA_DTYPES)
def any_nullable_float_dtype(request):
"""
Parameterized fixture for any nullable float dtype.

* 'Float32'
* 'Float64'
"""
return request.param


@pytest.fixture(params=tm.SIGNED_EA_INT_DTYPES)
def any_signed_nullable_int_dtype(request):
"""
Expand Down
17 changes: 13 additions & 4 deletions pandas/core/arrays/floating.py
Original file line number Diff line number Diff line change
Expand Up @@ -475,10 +475,19 @@ def _reduce(self, name: str, skipna: bool = True, **kwargs):

def sum(self, skipna=True, min_count=0, **kwargs):
nv.validate_sum((), kwargs)
result = masked_reductions.sum(
values=self._data, mask=self._mask, skipna=skipna, min_count=min_count
)
return result
return self._reduce("sum", skipna=skipna, min_count=min_count)

def prod(self, skipna=True, min_count=0, **kwargs):
nv.validate_prod((), kwargs)
return self._reduce("prod", skipna=skipna, min_count=min_count)

def min(self, skipna=True, **kwargs):
nv.validate_min((), kwargs)
return self._reduce("min", skipna=skipna)

def max(self, skipna=True, **kwargs):
nv.validate_max((), kwargs)
return self._reduce("max", skipna=skipna)

def _maybe_mask_result(self, result, mask, other, op_name: str):
"""
Expand Down
25 changes: 25 additions & 0 deletions pandas/tests/arrays/floating/test_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,3 +152,28 @@ def test_preserve_dtypes(op):
index=pd.Index(["a", "b"], name="A"),
)
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("method", ["min", "max"])
def test_floating_array_min_max(skipna, method, any_nullable_float_dtype):
dtype = any_nullable_float_dtype
arr = pd.array([0.0, 1.0, None], dtype=dtype)
func = getattr(arr, method)
result = func(skipna=skipna)
if skipna:
assert result == (0 if method == "min" else 1)
else:
assert result is pd.NA


@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("min_count", [0, 9])
def test_floating_array_prod(skipna, min_count, any_nullable_float_dtype):
dtype = any_nullable_float_dtype
arr = pd.array([1.0, 2.0, None], dtype=dtype)
result = arr.prod(skipna=skipna, min_count=min_count)
if skipna and min_count == 0:
assert result == 2
else:
assert result is pd.NA