Skip to content

ENH: Implement FloatingArray reductions #36778

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Oct 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 13 additions & 26 deletions pandas/core/arrays/floating.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,7 @@
from pandas.core.dtypes.dtypes import register_extension_dtype
from pandas.core.dtypes.missing import isna

from pandas.core import nanops, ops
from pandas.core.array_algos import masked_reductions
from pandas.core import ops
from pandas.core.ops import invalid_comparison
from pandas.core.ops.common import unpack_zerodim_and_defer
from pandas.core.tools.numeric import to_numeric
Expand Down Expand Up @@ -452,33 +451,21 @@ def cmp_method(self, other):
name = f"__{op.__name__}__"
return set_function_name(cmp_method, name, cls)

def _reduce(self, name: str, skipna: bool = True, **kwargs):
data = self._data
mask = self._mask

if name in {"sum", "prod", "min", "max"}:
op = getattr(masked_reductions, name)
return op(data, mask, skipna=skipna, **kwargs)

# coerce to a nan-aware float if needed
# (we explicitly use NaN within reductions)
if self._hasna:
data = self.to_numpy("float64", na_value=np.nan)

op = getattr(nanops, "nan" + name)
result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs)
def sum(self, skipna=True, min_count=0, **kwargs):
nv.validate_sum((), kwargs)
return super()._reduce("sum", skipna=skipna, min_count=min_count)

if np.isnan(result):
return libmissing.NA
def prod(self, skipna=True, min_count=0, **kwargs):
nv.validate_prod((), kwargs)
return super()._reduce("prod", skipna=skipna, min_count=min_count)

return result
def min(self, skipna=True, **kwargs):
nv.validate_min((), kwargs)
return super()._reduce("min", skipna=skipna)

def sum(self, skipna=True, min_count=0, **kwargs):
nv.validate_sum((), kwargs)
result = masked_reductions.sum(
values=self._data, mask=self._mask, skipna=skipna, min_count=min_count
)
return result
def max(self, skipna=True, **kwargs):
nv.validate_max((), kwargs)
return super()._reduce("max", skipna=skipna)

def _maybe_mask_result(self, result, mask, other, op_name: str):
"""
Expand Down
27 changes: 25 additions & 2 deletions pandas/tests/arrays/floating/test_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,8 +112,8 @@ def test_value_counts_empty():

@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("min_count", [0, 4])
def test_floating_array_sum(skipna, min_count):
arr = pd.array([1, 2, 3, None], dtype="Float64")
def test_floating_array_sum(skipna, min_count, dtype):
arr = pd.array([1, 2, 3, None], dtype=dtype)
result = arr.sum(skipna=skipna, min_count=min_count)
if skipna and min_count == 0:
assert result == 6.0
Expand Down Expand Up @@ -152,3 +152,26 @@ def test_preserve_dtypes(op):
index=pd.Index(["a", "b"], name="A"),
)
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("method", ["min", "max"])
def test_floating_array_min_max(skipna, method, dtype):
arr = pd.array([0.0, 1.0, None], dtype=dtype)
func = getattr(arr, method)
result = func(skipna=skipna)
if skipna:
assert result == (0 if method == "min" else 1)
else:
assert result is pd.NA


@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("min_count", [0, 9])
def test_floating_array_prod(skipna, min_count, dtype):
arr = pd.array([1.0, 2.0, None], dtype=dtype)
result = arr.prod(skipna=skipna, min_count=min_count)
if skipna and min_count == 0:
assert result == 2
else:
assert result is pd.NA