-
-
Notifications
You must be signed in to change notification settings - Fork 0
References and Symbols used
index >> References and Symbols used
∆ Max({i})- Min({i})
θ node weight
[1] Borgman, Christine L. (2015-01-02). Big Data, Little Data, No Data: Scholarship in the Networked World. Cambridge, MA, USA: MIT Press. ISBN 978-0-262-02856-1.
[2] Ficarra, Victoria; Fosci, Mattia; Chiarelli, Andrea; Kramer, Bianca; Proudman, Vanessa (2020-10-30). Scoping the Open Science Infrastructure Landscape in Europe (Report). Retrieved 2021-10-31.
[3] Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016). https://doi.org/10.1038/533452a
[4] ATCC, “Six factors affecting reproducibility in life science research and how to handle them”, available as an article on Nature website: https://www.nature.com/articles/d42473-019-00004-y
[5] Olavo B. Amaral, Kleber Neves. “Reproducibility: expect less of the scientific paper”, Nature 597, 329-331 (2021) doi: https://doi.org/10.1038/d41586-021-02486-7
[6] Federer, Lisa M.; Belter, Christopher W.; Joubert, Douglas J.; Livinski, Alicia; Lu, Ya-Ling; Snyders, Lissa N.; Thompson, Holly (2018-05-02). "Data sharing in PLOS ONE: An analysis of Data Availability Statements". PLOS ONE. 13 (5): –0194768. Bibcode:2018PLoSO..1394768F. doi:10.1371/journal.pone.0194768. ISSN 1932-6203. PMC 5931451. PMID 29719004.
[7] Colavizza, Giovanni; Hrynaszkiewicz, Iain; Staden, Isla; Whitaker, Kirstie; McGillivray, Barbara (2020-04-22). "The citation advantage of linking publications to research data". PLOS ONE. 15 (4): –0230416. arXiv:1907.02565. Bibcode:2020PLoSO..1530416C. doi:10.1371/journal.pone.0230416. ISSN 1932-6203. PMC 7176083. PMID 32320428.
[8] Colavizza, Giovanni; Hrynaszkiewicz, Iain; Staden, Isla; Whitaker, Kirstie; McGillivray, Barbara (2020-04-22). "The citation advantage of linking publications to research data". PLOS ONE. 15 (4): –0230416. arXiv:1907.02565. Bibcode:2020PLoSO..1530416C. doi:10.1371/journal.pone.0230416. ISSN 1932-6203. PMC 7176083. PMID 32320428.
[9] Alireza Sahami Shirazi, Niels Henze, Tilman Dingler, Martin Pielot, Dominik Weber, and Albrecht Schmidt. 2014. Large-scale assessment of mobile notifications. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3055–3064.
[10] Abhinav Mehrotra, Mirco Musolesi, Robert Hendley, and Veljko Pejovic. 2015. Designing content-driven intelligent notification mechanisms for mobile applications. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 813–824.
[11] Martin Pielot, Rodrigo de Oliveira, Haewoon Kwak, and Nuria Oliver. 2014. Didn’t you see my message?: predicting attentiveness to mobile instant messages. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3319–3328.
[12] Martin Pielot, Bruno Cardoso, Kleomenis Katevas, Joan Serrà, Aleksandar Matic, and Nuria Oliver. 2017. Beyond interruptibility: Predicting opportune moments to engage mobile phone users. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 91.
[13] Altman, M. (2008). A Fingerprint Method for Scientific Data Verification. In: Sobh, T. (eds) Advances in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8741-7_57
[14] Beni, G.; Wang, J. (1993). "Swarm Intelligence in Cellular Robotic Systems". Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30 (1989). Berlin, Heidelberg: Springer. pp. 703–712. doi:10.1007/978-3-642-58069-7_38. ISBN 978-3-642-63461-1
[15] Marcelo Paulon J.V., Bruno J. O. Souza, et al., “Exploring data collection on Bluetooth Mesh networks”, Journal Ad Hoc Networks, vol. 130 (2022), doi:10.1016/j.adhoc.2022.102809
[16] A. Pötsch and F. Hammer, "Towards End-to-End Latency of LoRaWAN: Experimental Analysis and IIoT Applicability," 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), 2019, pp. 1-4, doi: 10.1109/WFCS.2019.8758033
Conclusions << References and Symbols used
🟢 Fully tested and working
A green circle means the hardware electronics or the programming code was fully tested, each of its functionalities and capabilities. And it can be installed in a vehicle. Keep in mind this does not mean errors won't happen. As in everything related to electronics and software, there are revisions and updates. This open hardware is no different.
💯 Fully tested & working, no improvements necessary - already being sold online
🆓 Fully Open hardware \ source code
🤪 There's better than this. don't use it
🔐 Fully closed hardware \ source code
⚡️ fully tested and working, however, it is a dangerous solution to deploy
🟡 Not tested. Working capability is unknown, it may work or not.
A yellow circle means the hardware electronics or the programming code was not fully tested, each of its functionalities and capabilities. This does not mean it not working, it simply means testing is needed before giving a green circle of approval.
🔴 Fully tested but not working.
A red circle means the hardware electronics or the programming code was fully tested, and found some kind of critical error or fault. This means the electronics or firmware code cannot be used in a vehicle.
⌛ Not started.
The hourglass means the hardware electronics or the programming hasn't started. Most likely because is waiting for the necessary test components needed for reverse engineering and also engineering of the new open solution.
🆕 New updated contents
The new icon means the link next to it was recently updated with new contents
💬 Comments on the Discussion page
The comments icon means there are useful and even new comments on the discussions page of the repository important for what you are seeing or reading.
Join the beta program to test and debug to provide feedback, ideas, modifications, suggestions, and improvements. And in return, write your own article blog or post on social media about it. See participation conditions on the Wiki.
The Beta Participant Agreement is a legal document being executed between you and AeonLabs that outlines the conditions when participating in the Beta Program.
Bug reports and pull requests are welcome on any of AeonLabs repositories. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the code of conduct.
- Contributing
Please make sure tests pass before committing, and add new tests for new additions.
You can get in touch with me on my LinkedIn Profile:
You can also follow my GitHub Profile to stay updated about my latest projects:
The PCB design Files I provide here for anyone to use are free. If you like this Smart Device or use it, please consider buying me a cup of coffee, a slice of pizza or a book to help me study, eat and think new PCB design files.
Make a donation on PayPal and get a TAX refund*.
Liked any of my PCB KiCad Designs? Help and Support my open work to all by becoming a GitHub sponsor.
Before proceeding to download any of AeonLabs software solutions for open-source development and/or PCB hardware electronics development make sure you are choosing the right license for your project. See AeonLabs Solutions for Open Hardware & Source Development for more information.