Skip to content

Implement volatile loads and stores #167

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 51 additions & 21 deletions src/builder.rs
Original file line number Diff line number Diff line change
Expand Up @@ -654,24 +654,12 @@ impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {

fn load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, _align: Align) -> RValue<'gcc> {
// TODO(antoyo): use ty.
let block = self.llbb();
let function = block.get_function();
// NOTE: instead of returning the dereference here, we have to assign it to a variable in
// the current basic block. Otherwise, it could be used in another basic block, causing a
// dereference after a drop, for instance.
// TODO(antoyo): handle align of the load instruction.
let deref = ptr.dereference(None).to_rvalue();
let value_type = deref.get_type();
unsafe { RETURN_VALUE_COUNT += 1 };
let loaded_value = function.new_local(None, value_type, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT }));
block.add_assignment(None, loaded_value, deref);
loaded_value.to_rvalue()
// TODO: handle non-natural alignments
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The rust repo requires that TODO should be annotated with a name. If you don't plan to fix this later, just put my username there.

self.load_inner(ptr, false)
}

fn volatile_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): use ty.
let ptr = self.context.new_cast(None, ptr, ptr.get_type().make_volatile());
ptr.dereference(None).to_rvalue()
self.load_inner(ptr, true)
}

fn atomic_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) -> RValue<'gcc> {
Expand Down Expand Up @@ -799,17 +787,32 @@ impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
self.store_with_flags(val, ptr, align, MemFlags::empty())
}

fn store_with_flags(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align, _flags: MemFlags) -> RValue<'gcc> {
fn store_with_flags(&mut self, mut val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align, flags: MemFlags) -> RValue<'gcc> {
let ptr = self.check_store(val, ptr);

let destination = ptr.dereference(None);
// NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast
// to type so it gets the proper alignment.
let destination_type = destination.to_rvalue().get_type().unqualified();
let aligned_type = destination_type.get_aligned(align.bytes()).make_pointer();
let aligned_destination = self.cx.context.new_bitcast(None, ptr, aligned_type);
let aligned_destination = aligned_destination.dereference(None);
self.llbb().add_assignment(None, aligned_destination, val);
// TODO(antoyo): handle align and flags.

let align = if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() };
let mut modified_destination_type = destination_type.get_aligned(align);
if flags.contains(MemFlags::VOLATILE) {
modified_destination_type = modified_destination_type.make_volatile();
}

// FIXME: The type checking in `add_assignment` removes only one
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same for FIXME.

// qualifier from each side. So the writes `int → volatile int` and
// `int → int __attribute__((aligned(1)))` are considered legal but
// `int → volatile int __attribute__((aligned(1)))` is not. This seems
// like a bug in libgccjit. The easiest way to work around this is to
// bitcast `val` to have the matching qualifiers.
val = self.cx.context.new_bitcast(None, val, modified_destination_type);

let modified_ptr = self.cx.context.new_bitcast(None, ptr, modified_destination_type.make_pointer());
let modified_destination = modified_ptr.dereference(None);
self.llbb().add_assignment(None, modified_destination, val);
// TODO: handle `MemFlags::NONTEMPORAL`.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same here.

// NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here?
self.cx.context.new_rvalue_zero(self.type_i32())
}
Expand Down Expand Up @@ -1296,6 +1299,33 @@ impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
}

impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
fn load_inner(&mut self, ptr: RValue<'gcc>, is_volatile: bool) -> RValue<'gcc> {
let block = self.llbb();
let function = block.get_function();

// NOTE: instead of returning the dereference here, we have to assign it to a variable in
// the current basic block. Otherwise, it could be used in another basic block, causing a
// dereference after a drop, for instance.
let deref = ptr.dereference(None).to_rvalue();
let value_type = deref.get_type();

// If `is_volatile == true`, convert `ptr` to `volatile value_type *`
// and try dereference again. (libgccjit doesn't provide a way to get
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not sure if that's what you're talking about, but an alternative is to do:

ptr.get_type().get_pointee()

Copy link
Contributor Author

@yvt yvt Apr 27, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, that's exactly what I was looking for.

// `value_type` directly, unfortunately.)
let deref = if is_volatile {
let new_ptr_type = value_type.make_volatile().make_pointer();
self.pointercast(ptr, new_ptr_type).dereference(None).to_rvalue()
}
else {
deref
};

unsafe { RETURN_VALUE_COUNT += 1 };
let loaded_value = function.new_local(None, value_type, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT }));
block.add_assignment(None, loaded_value, deref);
loaded_value.to_rvalue()
}

#[cfg(feature="master")]
pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> {
let struct_type = mask.get_type().is_struct().expect("mask of struct type");
Expand Down
119 changes: 119 additions & 0 deletions tests/run/volatile.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
// Compiler:
//
// Run-time:
// status: 0

#![no_std]
#![feature(core_intrinsics, start)]

#[panic_handler]
fn panic_handler(_: &core::panic::PanicInfo) -> ! {
core::intrinsics::abort();
}

mod libc {
#[link(name = "c")]
extern "C" {
pub fn puts(s: *const u8) -> i32;

pub fn sigaction(signum: i32, act: *const sigaction, oldact: *mut sigaction) -> i32;
pub fn mmap(addr: *mut (), len: usize, prot: i32, flags: i32, fd: i32, offset: i64) -> *mut ();
pub fn mprotect(addr: *mut (), len: usize, prot: i32) -> i32;
}

pub const PROT_READ: i32 = 1;
pub const PROT_WRITE: i32 = 2;
pub const MAP_PRIVATE: i32 = 0x0002;
pub const MAP_ANONYMOUS: i32 = 0x0020;
pub const MAP_FAILED: *mut u8 = !0 as *mut u8;

/// glibc sigaction
#[repr(C)]
pub struct sigaction {
pub sa_sigaction: Option<unsafe extern "C" fn(i32, *mut (), *mut ())>,
pub sa_mask: [u32; 32],
pub sa_flags: i32,
pub sa_restorer: Option<unsafe extern "C" fn()>,
}

pub const SA_SIGINFO: i32 = 0x00000004;
pub const SIGSEGV: i32 = 11;
}

static mut COUNT: u32 = 0;
static mut STORAGE: *mut u8 = core::ptr::null_mut();
const PAGE_SIZE: usize = 1 << 15;

#[start]
fn main(_argc: isize, _argv: *const *const u8) -> isize {
unsafe {
// Register a segfault handler
libc::sigaction(
libc::SIGSEGV,
&libc::sigaction {
sa_sigaction: Some(segv_handler),
sa_flags: libc::SA_SIGINFO,
..core::mem::zeroed()
},
core::ptr::null_mut(),
);

STORAGE = libc::mmap(
core::ptr::null_mut(),
PAGE_SIZE * 2,
0,
libc::MAP_PRIVATE | libc::MAP_ANONYMOUS,
-1,
0,
).cast();
if STORAGE == libc::MAP_FAILED {
libc::puts(b"error: mmap failed\0".as_ptr());
return 1;
}

let p_count = (&mut COUNT) as *mut u32;
p_count.write_volatile(0);

// Trigger segfaults
STORAGE.add(0).write_volatile(1);
STORAGE.add(PAGE_SIZE).write_volatile(1);
STORAGE.add(0).write_volatile(1);
STORAGE.add(PAGE_SIZE).write_volatile(1);
STORAGE.add(0).write_volatile(1);
STORAGE.add(PAGE_SIZE).write_volatile(1);

// The segfault handler should have been called for every
// `write_volatile` in `STORAGE`. If the compiler ignores volatility,
// some of these writes will be combined, causing a different number of
// segfaults.
//
// This `p_count` read is done by a volatile read. If the compiler
// ignores volatility, the compiler will speculate that `*p_count` is
// unchanged and remove this check, failing the test.
if p_count.read_volatile() != 6 {
libc::puts(b"error: segfault count mismatch\0".as_ptr());
return 1;
}

0
}
}

unsafe extern "C" fn segv_handler(_: i32, _: *mut (), _: *mut ()) {
let p_count = (&mut COUNT) as *mut u32;
p_count.write_volatile(p_count.read_volatile() + 1);
let count = p_count.read_volatile();

// Toggle the protected page so that the handler will be called for
// each `write_volatile`
libc::mprotect(
STORAGE.cast(),
PAGE_SIZE,
if count % 2 == 1 { libc::PROT_READ | libc::PROT_WRITE } else { 0 },
);
libc::mprotect(
STORAGE.add(PAGE_SIZE).cast(),
PAGE_SIZE,
if count % 2 == 0 { libc::PROT_READ | libc::PROT_WRITE } else { 0 },
);
}