Skip to content

ENH/CLN: add HistPlot class inheriting MPLPlot #7809

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 11, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/v0.15.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,8 @@ previously results in ``Exception`` or ``TypeError`` (:issue:`7812`)

- ``Timestamp.__repr__`` displays ``dateutil.tz.tzoffset`` info (:issue:`7907`)

- Histogram from ``DataFrame.plot`` with ``kind='hist'`` (:issue:`7809`), See :ref:`the docs<visualization.hist>`.

.. _whatsnew_0150.dt:

.dt accessor
Expand Down
41 changes: 41 additions & 0 deletions doc/source/visualization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,7 @@ a handful of values for plots other than the default Line plot.
These include:

* :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
* :ref:`'hist' <visualization.hist>` for histogram
* :ref:`'kde' <visualization.kde>` or ``'density'`` for density plots
* :ref:`'area' <visualization.area_plot>` for area plots
* :ref:`'scatter' <visualization.scatter_matrix>` for scatter plots
Expand Down Expand Up @@ -205,6 +206,46 @@ To get horizontal bar plots, pass ``kind='barh'``:

Histograms
~~~~~~~~~~

.. versionadded:: 0.15.0

Histogram can be drawn specifying ``kind='hist'``.

.. ipython:: python

df4 = DataFrame({'a': randn(1000) + 1, 'b': randn(1000),
'c': randn(1000) - 1}, columns=['a', 'b', 'c'])

plt.figure();

@savefig hist_new.png
df4.plot(kind='hist', alpha=0.5)

Histogram can be stacked by ``stacked=True``. Bin size can be changed by ``bins`` keyword.

.. ipython:: python

plt.figure();

@savefig hist_new_stacked.png
df4.plot(kind='hist', stacked=True, bins=20)

You can pass other keywords supported by matplotlib ``hist``. For example, horizontal and cumulative histgram can be drawn by ``orientation='horizontal'`` and ``cumulative='True'``.

.. ipython:: python

plt.figure();

@savefig hist_new_kwargs.png
df4['a'].plot(kind='hist', orientation='horizontal', cumulative=True)


See the :meth:`hist <matplotlib.axes.Axes.hist>` method and the
`matplotlib hist documenation <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hist>`__ for more.


The previous interface ``DataFrame.hist`` to plot histogram still can be used.

.. ipython:: python

plt.figure();
Expand Down
221 changes: 212 additions & 9 deletions pandas/tests/test_graphics.py
Original file line number Diff line number Diff line change
Expand Up @@ -452,7 +452,7 @@ def test_plot(self):
_check_plot_works(self.ts.plot, kind='area', stacked=False)
_check_plot_works(self.iseries.plot)

for kind in ['line', 'bar', 'barh', 'kde']:
for kind in ['line', 'bar', 'barh', 'kde', 'hist']:
if not _ok_for_gaussian_kde(kind):
continue
_check_plot_works(self.series[:5].plot, kind=kind)
Expand Down Expand Up @@ -616,7 +616,13 @@ def test_pie_series(self):
self._check_text_labels(ax.texts, series.index)

@slow
def test_hist(self):
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.plot(kind='hist', bins=5)
self.assertEqual(len(ax.patches), 10)

@slow
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
Expand All @@ -637,7 +643,7 @@ def test_hist(self):
self.ts.hist(by=self.ts.index, figure=fig)

@slow
def test_hist_bins(self):
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
self.assertEqual(len(ax.patches), 2)
Expand Down Expand Up @@ -701,13 +707,25 @@ def test_plot_fails_when_ax_differs_from_figure(self):
self.ts.hist(ax=ax1, figure=fig2)

@slow
def test_kde(self):
def test_hist_kde(self):
ax = self.ts.plot(kind='hist', logy=True)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [''] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))

tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
_check_plot_works(self.ts.plot, kind='kde')
_check_plot_works(self.ts.plot, kind='density')
ax = self.ts.plot(kind='kde', logy=True)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [''] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))

@slow
def test_kde_kwargs(self):
Expand All @@ -718,9 +736,29 @@ def test_kde_kwargs(self):
_check_plot_works(self.ts.plot, kind='density', bw_method=.5, ind=linspace(-100,100,20))
ax = self.ts.plot(kind='kde', logy=True, bw_method=.5, ind=linspace(-100,100,20))
self._check_ax_scales(ax, yaxis='log')
self._check_text_labels(ax.yaxis.get_label(), 'Density')

@slow
def test_kde_color(self):
def test_hist_kwargs(self):
ax = self.ts.plot(kind='hist', bins=5)
self.assertEqual(len(ax.patches), 5)
self._check_text_labels(ax.yaxis.get_label(), 'Degree')
tm.close()

ax = self.ts.plot(kind='hist', orientation='horizontal')
self._check_text_labels(ax.xaxis.get_label(), 'Degree')
tm.close()

ax = self.ts.plot(kind='hist', align='left', stacked=True)
tm.close()

@slow
def test_hist_kde_color(self):
ax = self.ts.plot(kind='hist', logy=True, bins=10, color='b')
self._check_ax_scales(ax, yaxis='log')
self.assertEqual(len(ax.patches), 10)
self._check_colors(ax.patches, facecolors=['b'] * 10)

tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
ax = self.ts.plot(kind='kde', logy=True, color='r')
Expand Down Expand Up @@ -1611,7 +1649,7 @@ def test_boxplot_return_type(self):
self._check_box_return_type(result, 'both')

@slow
def test_kde(self):
def test_kde_df(self):
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
df = DataFrame(randn(100, 4))
Expand All @@ -1630,7 +1668,122 @@ def test_kde(self):
self._check_ax_scales(axes, yaxis='log')

@slow
def test_hist(self):
def test_hist_df(self):
df = DataFrame(randn(100, 4))
series = df[0]

ax = _check_plot_works(df.plot, kind='hist')
expected = [com.pprint_thing(c) for c in df.columns]
self._check_legend_labels(ax, labels=expected)

axes = _check_plot_works(df.plot, kind='hist', subplots=True, logy=True)
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
self._check_ax_scales(axes, yaxis='log')

axes = series.plot(kind='hist', rot=40)
self._check_ticks_props(axes, xrot=40, yrot=0)
tm.close()

ax = series.plot(kind='hist', normed=True, cumulative=True, bins=4)
# height of last bin (index 5) must be 1.0
self.assertAlmostEqual(ax.get_children()[5].get_height(), 1.0)
tm.close()

ax = series.plot(kind='hist', cumulative=True, bins=4)
self.assertAlmostEqual(ax.get_children()[5].get_height(), 100.0)
tm.close()

# if horizontal, yticklabels are rotated
axes = df.plot(kind='hist', rot=50, fontsize=8, orientation='horizontal')
self._check_ticks_props(axes, xrot=0, yrot=50, ylabelsize=8)

def _check_box_coord(self, patches, expected_y=None, expected_h=None,
expected_x=None, expected_w=None):
result_y = np.array([p.get_y() for p in patches])
result_height = np.array([p.get_height() for p in patches])
result_x = np.array([p.get_x() for p in patches])
result_width = np.array([p.get_width() for p in patches])

if expected_y is not None:
self.assert_numpy_array_equal(result_y, expected_y)
if expected_h is not None:
self.assert_numpy_array_equal(result_height, expected_h)
if expected_x is not None:
self.assert_numpy_array_equal(result_x, expected_x)
if expected_w is not None:
self.assert_numpy_array_equal(result_width, expected_w)

@slow
def test_hist_df_coord(self):
normal_df = DataFrame({'A': np.repeat(np.array([1, 2, 3, 4, 5]),
np.array([10, 9, 8, 7, 6])),
'B': np.repeat(np.array([1, 2, 3, 4, 5]),
np.array([8, 8, 8, 8, 8])),
'C': np.repeat(np.array([1, 2, 3, 4, 5]),
np.array([6, 7, 8, 9, 10]))},
columns=['A', 'B', 'C'])

nan_df = DataFrame({'A': np.repeat(np.array([np.nan, 1, 2, 3, 4, 5]),
np.array([3, 10, 9, 8, 7, 6])),
'B': np.repeat(np.array([1, np.nan, 2, 3, 4, 5]),
np.array([8, 3, 8, 8, 8, 8])),
'C': np.repeat(np.array([1, 2, 3, np.nan, 4, 5]),
np.array([6, 7, 8, 3, 9, 10]))},
columns=['A', 'B', 'C'])

for df in [normal_df, nan_df]:
ax = df.plot(kind='hist', bins=5)
self._check_box_coord(ax.patches[:5], expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([10, 9, 8, 7, 6]))
self._check_box_coord(ax.patches[5:10], expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([8, 8, 8, 8, 8]))
self._check_box_coord(ax.patches[10:], expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([6, 7, 8, 9, 10]))

ax = df.plot(kind='hist', bins=5, stacked=True)
self._check_box_coord(ax.patches[:5], expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([10, 9, 8, 7, 6]))
self._check_box_coord(ax.patches[5:10], expected_y=np.array([10, 9, 8, 7, 6]),
expected_h=np.array([8, 8, 8, 8, 8]))
self._check_box_coord(ax.patches[10:], expected_y=np.array([18, 17, 16, 15, 14]),
expected_h=np.array([6, 7, 8, 9, 10]))

axes = df.plot(kind='hist', bins=5, stacked=True, subplots=True)
self._check_box_coord(axes[0].patches, expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([10, 9, 8, 7, 6]))
self._check_box_coord(axes[1].patches, expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([8, 8, 8, 8, 8]))
self._check_box_coord(axes[2].patches, expected_y=np.array([0, 0, 0, 0, 0]),
expected_h=np.array([6, 7, 8, 9, 10]))

# horizontal
ax = df.plot(kind='hist', bins=5, orientation='horizontal')
self._check_box_coord(ax.patches[:5], expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([10, 9, 8, 7, 6]))
self._check_box_coord(ax.patches[5:10], expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([8, 8, 8, 8, 8]))
self._check_box_coord(ax.patches[10:], expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([6, 7, 8, 9, 10]))

ax = df.plot(kind='hist', bins=5, stacked=True, orientation='horizontal')
self._check_box_coord(ax.patches[:5], expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([10, 9, 8, 7, 6]))
self._check_box_coord(ax.patches[5:10], expected_x=np.array([10, 9, 8, 7, 6]),
expected_w=np.array([8, 8, 8, 8, 8]))
self._check_box_coord(ax.patches[10:], expected_x=np.array([18, 17, 16, 15, 14]),
expected_w=np.array([6, 7, 8, 9, 10]))

axes = df.plot(kind='hist', bins=5, stacked=True,
subplots=True, orientation='horizontal')
self._check_box_coord(axes[0].patches, expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([10, 9, 8, 7, 6]))
self._check_box_coord(axes[1].patches, expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([8, 8, 8, 8, 8]))
self._check_box_coord(axes[2].patches, expected_x=np.array([0, 0, 0, 0, 0]),
expected_w=np.array([6, 7, 8, 9, 10]))

@slow
def test_hist_df_legacy(self):
_check_plot_works(self.hist_df.hist)

# make sure layout is handled
Expand Down Expand Up @@ -1849,7 +2002,7 @@ def test_plot_int_columns(self):

@slow
def test_df_legend_labels(self):
kinds = 'line', 'bar', 'barh', 'kde', 'area'
kinds = ['line', 'bar', 'barh', 'kde', 'area', 'hist']
df = DataFrame(rand(3, 3), columns=['a', 'b', 'c'])
df2 = DataFrame(rand(3, 3), columns=['d', 'e', 'f'])
df3 = DataFrame(rand(3, 3), columns=['g', 'h', 'i'])
Expand Down Expand Up @@ -1927,7 +2080,7 @@ def test_legend_name(self):

@slow
def test_no_legend(self):
kinds = 'line', 'bar', 'barh', 'kde', 'area'
kinds = ['line', 'bar', 'barh', 'kde', 'area', 'hist']
df = DataFrame(rand(3, 3), columns=['a', 'b', 'c'])

for kind in kinds:
Expand Down Expand Up @@ -2019,6 +2172,56 @@ def test_area_colors(self):
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
self._check_colors(poly, facecolors=rgba_colors)

@slow
def test_hist_colors(self):
default_colors = self.plt.rcParams.get('axes.color_cycle')

df = DataFrame(randn(5, 5))
ax = df.plot(kind='hist')
self._check_colors(ax.patches[::10], facecolors=default_colors[:5])
tm.close()

custom_colors = 'rgcby'
ax = df.plot(kind='hist', color=custom_colors)
self._check_colors(ax.patches[::10], facecolors=custom_colors)
tm.close()

from matplotlib import cm
# Test str -> colormap functionality
ax = df.plot(kind='hist', colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::10], facecolors=rgba_colors)
tm.close()

# Test colormap functionality
ax = df.plot(kind='hist', colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::10], facecolors=rgba_colors)
tm.close()

ax = df.ix[:, [0]].plot(kind='hist', color='DodgerBlue')
self._check_colors([ax.patches[0]], facecolors=['DodgerBlue'])

@slow
def test_kde_colors(self):
from matplotlib import cm

custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))

ax = df.plot(kind='kde', color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()

ax = df.plot(kind='kde', colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()

ax = df.plot(kind='kde', colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)

def test_default_color_cycle(self):
import matplotlib.pyplot as plt
plt.rcParams['axes.color_cycle'] = list('rgbk')
Expand Down
Loading