.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np import pandas as pd from numpy.random import randn, rand, randint np.random.seed(123456) from pandas import DataFrame, Series, date_range, options import pandas.util.testing as tm np.set_printoptions(precision=4, suppress=True) import matplotlib.pyplot as plt plt.close('all') options.display.mpl_style = 'default' options.display.max_rows = 15 from pandas.compat import lrange
We use the standard convention for referencing the matplotlib API:
.. ipython:: python import matplotlib.pyplot as plt
.. versionadded:: 0.11.0
The display.mpl_style
produces more appealing plots.
When set, matplotlib's rcParams
are changed (globally!) to nicer-looking settings.
All the plots in the documentation are rendered with this option set to the
'default' style.
.. ipython:: python pd.options.display.mpl_style = 'default'
We provide the basics in pandas to easily create decent looking plots. See the :ref:`ecosystem <ecosystem.visualization>` section for visualization libraries that go beyond the basics documented here.
Note
All calls to np.random
are seeded with 123456.
See the :ref:`cookbook<cookbook.plotting>` for some advanced strategies
The plot
method on Series and DataFrame is just a simple wrapper around
:meth:`plt.plot() <matplotlib.axes.Axes.plot>`:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = ts.cumsum() @savefig series_plot_basic.png ts.plot()
If the index consists of dates, it calls :meth:`gcf().autofmt_xdate() <matplotlib.figure.Figure.autofmt_xdate>` to try to format the x-axis nicely as per above.
On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the columns with labels:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD')) df = df.cumsum() @savefig frame_plot_basic.png plt.figure(); df.plot();
You can plot one column versus another using the x and y keywords in :meth:`~DataFrame.plot`:
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python df3 = DataFrame(randn(1000, 2), columns=['B', 'C']).cumsum() df3['A'] = Series(list(range(len(df)))) @savefig df_plot_xy.png df3.plot(x='A', y='B')
Note
For more formatting and sytling options, see :ref:`below <visualization.formatting>`.
.. ipython:: python :suppress: plt.close('all')
The kind
keyword argument of :meth:`~DataFrame.plot` accepts
a handful of values for plots other than the default Line plot.
These include:
- :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
- :ref:`'hist' <visualization.hist>` for histogram
- :ref:`'kde' <visualization.kde>` or
'density'
for density plots - :ref:`'area' <visualization.area_plot>` for area plots
- :ref:`'scatter' <visualization.scatter_matrix>` for scatter plots
- :ref:`'hexbin' <visualization.hexbin>` for hexagonal bin plots
- :ref:`'pie' <visualization.pie>` for pie plots
In addition to these kind
s, there are the :ref:`DataFrame.hist() <visualization.hist>`,
and :ref:`DataFrame.boxplot() <visualization.box>` methods, which use a separate interface.
Finally, there are several :ref:`plotting functions <visualization.tools>` in pandas.tools.plotting
that take a :class:`Series` or :class:`DataFrame` as an argument. These
include
- :ref:`Scatter Matrix <visualization.scatter_matrix>`
- :ref:`Andrews Curves <visualization.andrews_curves>`
- :ref:`Parallel Coordinates <visualization.parallel_coordinates>`
- :ref:`Lag Plot <visualization.lag>`
- :ref:`Autocorrelation Plot <visualization.autocorrelation>`
- :ref:`Bootstrap Plot <visualization.bootstrap>`
- :ref:`RadViz <visualization.radviz>`
Plots may also be adorned with :ref:`errorbars <visualization.errorbars>` or :ref:`tables <visualization.table>`.
For labeled, non-time series data, you may wish to produce a bar plot:
.. ipython:: python plt.figure(); @savefig bar_plot_ex.png df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Calling a DataFrame's :meth:`~DataFrame.plot` method with kind='bar'
produces a multiple
bar plot:
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python df2 = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd']) @savefig bar_plot_multi_ex.png df2.plot(kind='bar');
To produce a stacked bar plot, pass stacked=True
:
.. ipython:: python :suppress: plt.figure()
.. ipython:: python @savefig bar_plot_stacked_ex.png df2.plot(kind='bar', stacked=True);
To get horizontal bar plots, pass kind='barh'
:
.. ipython:: python :suppress: plt.figure()
.. ipython:: python @savefig barh_plot_stacked_ex.png df2.plot(kind='barh', stacked=True);
.. versionadded:: 0.15.0
Histogram can be drawn specifying kind='hist'
.
.. ipython:: python df4 = DataFrame({'a': randn(1000) + 1, 'b': randn(1000), 'c': randn(1000) - 1}, columns=['a', 'b', 'c']) plt.figure(); @savefig hist_new.png df4.plot(kind='hist', alpha=0.5)
Histogram can be stacked by stacked=True
. Bin size can be changed by bins
keyword.
.. ipython:: python plt.figure(); @savefig hist_new_stacked.png df4.plot(kind='hist', stacked=True, bins=20)
You can pass other keywords supported by matplotlib hist
. For example, horizontal and cumulative histgram can be drawn by orientation='horizontal'
and cumulative='True'
.
.. ipython:: python plt.figure(); @savefig hist_new_kwargs.png df4['a'].plot(kind='hist', orientation='horizontal', cumulative=True)
See the :meth:`hist <matplotlib.axes.Axes.hist>` method and the matplotlib hist documenation for more.
The previous interface DataFrame.hist
to plot histogram still can be used.
.. ipython:: python plt.figure(); @savefig hist_plot_ex.png df['A'].diff().hist()
:meth:`DataFrame.hist` plots the histograms of the columns on multiple subplots:
.. ipython:: python plt.figure() @savefig frame_hist_ex.png df.diff().hist(color='k', alpha=0.5, bins=50)
.. versionadded:: 0.10.0
The by
keyword can be specified to plot grouped histograms:
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python data = Series(randn(1000)) @savefig grouped_hist.png data.hist(by=randint(0, 4, 1000), figsize=(6, 4))
DataFrame has a :meth:`~DataFrame.boxplot` method that allows you to visualize the distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python :okwarning: df = DataFrame(rand(10,5)) plt.figure(); @savefig box_plot_ex.png bp = df.boxplot()
You can create a stratified boxplot using the by
keyword argument to create
groupings. For instance,
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python :okwarning: df = DataFrame(rand(10,2), columns=['Col1', 'Col2'] ) df['X'] = Series(['A','A','A','A','A','B','B','B','B','B']) plt.figure(); @savefig box_plot_ex2.png bp = df.boxplot(by='X')
You can also pass a subset of columns to plot, as well as group by multiple columns:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python :okwarning: df = DataFrame(rand(10,3), columns=['Col1', 'Col2', 'Col3']) df['X'] = Series(['A','A','A','A','A','B','B','B','B','B']) df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B']) plt.figure(); @savefig box_plot_ex3.png bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
.. ipython:: python :suppress: plt.close('all')
The return type of boxplot
depends on two keyword arguments: by
and return_type
.
When by
is None
:
- if
return_type
is'dict'
, a dictionary containing the :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned. The keys are "boxes", "caps", "fliers", "medians", and "whiskers". - This is the default.
- if
- if
return_type
is'axes'
, a :class:`matplotlib Axes <matplotlib.axes.Axes>` containing the boxplot is returned. - if
return_type
is'both'
a namedtuple containging the :class:`matplotlib Axes <matplotlib.axes.Axes>` - and :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned
- if
When by
is some column of the DataFrame, a dict of return_type
is returned, where
the keys are the columns of the DataFrame. The plot has a facet for each column of
the DataFrame, with a separate box for each value of by
.
Finally, when calling boxplot on a :class:`Groupby` object, a dict of return_type
is returned, where the keys are the same as the Groupby object. The plot has a
facet for each key, with each facet containing a box for each column of the
DataFrame.
.. ipython:: python :okwarning: np.random.seed(1234) df_box = DataFrame(np.random.randn(50, 2)) df_box['g'] = np.random.choice(['A', 'B'], size=50) df_box.loc[df_box['g'] == 'B', 1] += 3 @savefig boxplot_groupby.png bp = df_box.boxplot(by='g')
Compare to:
.. ipython:: python :okwarning: @savefig groupby_boxplot_vis.png bp = df_box.groupby('g').boxplot()
.. versionadded:: 0.14
You can create area plots with Series.plot
and DataFrame.plot
by passing kind='area'
. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use :func:`dataframe.dropna` or :func:`dataframe.fillna` before calling plot.
.. ipython:: python :suppress: np.random.seed(123456) plt.figure()
.. ipython:: python df = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd']) @savefig area_plot_stacked.png df.plot(kind='area');
To produce an unstacked plot, pass stacked=False
. Alpha value is set to 0.5 unless otherwise specified:
.. ipython:: python :suppress: plt.figure()
.. ipython:: python @savefig area_plot_unstacked.png df.plot(kind='area', stacked=False);
.. versionadded:: 0.14
You can create hexagonal bin plots with :meth:`DataFrame.plot` and
kind='hexbin'
.
Hexbin plots can be a useful alternative to scatter plots if your data are
too dense to plot each point individually.
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python df = DataFrame(randn(1000, 2), columns=['a', 'b']) df['b'] = df['b'] + np.arange(1000) @savefig hexbin_plot.png df.plot(kind='hexbin', x='a', y='b', gridsize=25)
A useful keyword argument is gridsize
; it controls the number of hexagons
in the x-direction, and defaults to 100. A larger gridsize
means more, smaller
bins.
By default, a histogram of the counts around each (x, y)
point is computed.
You can specify alternative aggregations by passing values to the C
and
reduce_C_function
arguments. C
specifies the value at each (x, y)
point
and reduce_C_function
is a function of one argument that reduces all the
values in a bin to a single number (e.g. mean
, max
, sum
, std
). In this
example the positions are given by columns a
and b
, while the value is
given by column z
. The bins are aggregated with numpy's max
function.
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python df = DataFrame(randn(1000, 2), columns=['a', 'b']) df['b'] = df['b'] = df['b'] + np.arange(1000) df['z'] = np.random.uniform(0, 3, 1000) @savefig hexbin_plot_agg.png df.plot(kind='hexbin', x='a', y='b', C='z', reduce_C_function=np.max, gridsize=25)
See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the matplotlib hexbin documenation for more.
.. versionadded:: 0.14
You can create a pie plot with :meth:`DataFrame.plot` or :meth:`Series.plot` with kind='pie'
.
If your data includes any NaN
, they will be automatically filled with 0.
A ValueError
will be raised if there are any negative values in your data.
.. ipython:: python :suppress: np.random.seed(123456) plt.figure()
.. ipython:: python series = Series(3 * rand(4), index=['a', 'b', 'c', 'd'], name='series') @savefig series_pie_plot.png series.plot(kind='pie')
Note that pie plot with :class:`DataFrame` requires that you either specify a target column by the y
argument or subplots=True
. When y
is specified, pie plot of selected column
will be drawn. If subplots=True
is specified, pie plots for each column are drawn as subplots.
A legend will be drawn in each pie plots by default; specify legend=False
to hide it.
.. ipython:: python :suppress: np.random.seed(123456) plt.figure()
.. ipython:: python df = DataFrame(3 * rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y']) @savefig df_pie_plot.png df.plot(kind='pie', subplots=True)
You can use the labels
and colors
keywords to specify the labels and colors of each wedge.
Warning
Most pandas plots use the the label
and color
arguments (not the lack of "s" on those).
To be consistent with :func:`matplotlib.pyplot.pie` you must use labels
and colors
.
If you want to hide wedge labels, specify labels=None
.
If fontsize
is specified, the value will be applied to wedge labels.
Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.
.. ipython:: python :suppress: plt.figure()
.. ipython:: python @savefig series_pie_plot_options.png series.plot(kind='pie', labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'], autopct='%.2f', fontsize=20)
If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.
.. ipython:: python :suppress: plt.figure()
.. ipython:: python series = Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2') @savefig series_pie_plot_semi.png series.plot(kind='pie')
See the matplotlib pie documenation for more.
.. ipython:: python :suppress: plt.close('all')
These functions can be imported from pandas.tools.plotting
and take a :class:`Series` or :class:`DataFrame` as an argument.
.. versionadded:: 0.7.3
- You can create a scatter plot matrix using the
scatter_matrix
method inpandas.tools.plotting
:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.tools.plotting import scatter_matrix df = DataFrame(randn(1000, 4), columns=['a', 'b', 'c', 'd']) @savefig scatter_matrix_kde.png scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
.. versionadded:: 0.8.0
You can create density plots using the Series/DataFrame.plot and
setting kind='kde'
:
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python ser = Series(randn(1000)) @savefig kde_plot.png ser.plot(kind='kde')
Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.
Note: The "Iris" dataset is available here.
.. ipython:: python from pandas import read_csv from pandas.tools.plotting import andrews_curves data = read_csv('data/iris.data') plt.figure() @savefig andrews_curves.png andrews_curves(data, 'Name')
Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.
.. ipython:: python from pandas import read_csv from pandas.tools.plotting import parallel_coordinates data = read_csv('data/iris.data') plt.figure() @savefig parallel_coordinates.png parallel_coordinates(data, 'Name')
Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.tools.plotting import lag_plot plt.figure() data = Series(0.1 * rand(1000) + 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000))) @savefig lag_plot.png lag_plot(data)
Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.tools.plotting import autocorrelation_plot plt.figure() data = Series(0.7 * rand(1000) + 0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000))) @savefig autocorrelation_plot.png autocorrelation_plot(data)
Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.tools.plotting import bootstrap_plot data = Series(rand(1000)) @savefig bootstrap_plot.png bootstrap_plot(data, size=50, samples=500, color='grey')
.. ipython:: python :suppress: plt.close('all')
RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently.
Note: The "Iris" dataset is available here.
.. ipython:: python from pandas import read_csv from pandas.tools.plotting import radviz data = read_csv('data/iris.data') plt.figure() @savefig radviz.png radviz(data, 'Name')
Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:
.. ipython:: python @savefig series_plot_basic2.png plt.figure(); ts.plot(style='k--', label='Series');
For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding matplotlib function (:meth:`ax.plot() <matplotlib.axes.Axes.plot>`, :meth:`ax.bar() <matplotlib.axes.Axes.bar>`, :meth:`ax.scatter() <matplotlib.axes.Axes.scatter>`). These can be used to control additional styling, beyond what pandas provides.
You may set the legend
argument to False
to hide the legend, which is
shown by default.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD')) df = df.cumsum() @savefig frame_plot_basic_noleg.png df.plot(legend=False)
You may pass logy
to get a log-scale Y axis.
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = np.exp(ts.cumsum()) @savefig series_plot_logy.png ts.plot(logy=True)
See also the logx
and loglog
keyword arguments.
To plot data on a secondary y-axis, use the secondary_y
keyword:
.. ipython:: python :suppress: plt.figure()
.. ipython:: python df.A.plot() @savefig series_plot_secondary_y.png df.B.plot(secondary_y=True, style='g')
To plot some columns in a DataFrame, give the column names to the secondary_y
keyword:
.. ipython:: python plt.figure() ax = df.plot(secondary_y=['A', 'B']) ax.set_ylabel('CD scale') @savefig frame_plot_secondary_y.png ax.right_ax.set_ylabel('AB scale')
Note that the columns plotted on the secondary y-axis is automatically marked
with "(right)" in the legend. To turn off the automatic marking, use the
mark_right=False
keyword:
.. ipython:: python plt.figure() @savefig frame_plot_secondary_y_no_right.png df.plot(secondary_y=['A', 'B'], mark_right=False)
pandas includes automatically tick resolution adjustment for regular frequency
time-series data. For limited cases where pandas cannot infer the frequency
information (e.g., in an externally created twinx
), you can choose to
suppress this behavior for alignment purposes.
Here is the default behavior, notice how the x-axis tick labelling is performed:
.. ipython:: python plt.figure() @savefig ser_plot_suppress.png df.A.plot()
Using the x_compat
parameter, you can suppress this behavior:
.. ipython:: python plt.figure() @savefig ser_plot_suppress_parm.png df.A.plot(x_compat=True)
If you have more than one plot that needs to be suppressed, the use
method
in pandas.plot_params
can be used in a with statement:
.. ipython:: python import pandas as pd plt.figure() @savefig ser_plot_suppress_context.png with pd.plot_params.use('x_compat', True): df.A.plot(color='r') df.B.plot(color='g') df.C.plot(color='b')
Each Series in a DataFrame can be plotted on a different axis
with the subplots
keyword:
.. ipython:: python @savefig frame_plot_subplots.png df.plot(subplots=True, figsize=(6, 6));
You can pass an ax
argument to :meth:`Series.plot` to plot on a particular axis:
.. ipython:: python :suppress: np.random.seed(123456) ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = ts.cumsum() df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD')) df = df.cumsum()
.. ipython:: python fig, axes = plt.subplots(nrows=2, ncols=2) df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A') df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B') df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C') @savefig series_plot_multi.png df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')
.. ipython:: python :suppress: plt.close('all')
.. versionadded:: 0.14
Plotting with error bars is now supported in the :meth:`DataFrame.plot` and :meth:`Series.plot`
Horizontal and vertical errorbars can be supplied to the xerr
and yerr
keyword arguments to :meth:`~DataFrame.plot()`. The error values can be specified using a variety of formats.
- As a :class:`DataFrame` or
dict
of errors with column names matching thecolumns
attribute of the plotting :class:`DataFrame` or matching thename
attribute of the :class:`Series` - As a
str
indicating which of the columns of plotting :class:`DataFrame` contain the error values - As raw values (
list
,tuple
, ornp.ndarray
). Must be the same length as the plotting :class:`DataFrame`/:class:`Series`
Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a M
length :class:`Series`, a Mx2
array should be provided indicating lower and upper (or left and right) errors. For a MxN
:class:`DataFrame`, asymmetrical errors should be in a Mx2xN
array.
Here is an example of one way to easily plot group means with standard deviations from the raw data.
.. ipython:: python # Generate the data ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word']) df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3) # Group by index labels and take the means and standard deviations for each group gp3 = df3.groupby(level=('letter', 'word')) means = gp3.mean() errors = gp3.std() means errors # Plot fig, ax = plt.subplots() @savefig errorbar_example.png means.plot(yerr=errors, ax=ax, kind='bar')
.. versionadded:: 0.14
Plotting with matplotlib table is now supported in :meth:`DataFrame.plot` and :meth:`Series.plot` with a table
keyword. The table
keyword can accept bool
, :class:`DataFrame` or :class:`Series`. The simple way to draw a table is to specify table=True
. Data will be transposed to meet matplotlib's default layout.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python fig, ax = plt.subplots(1, 1) df = DataFrame(rand(5, 3), columns=['a', 'b', 'c']) ax.get_xaxis().set_visible(False) # Hide Ticks @savefig line_plot_table_true.png df.plot(table=True, ax=ax)
Also, you can pass different :class:`DataFrame` or :class:`Series` for table
keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.
.. ipython:: python fig, ax = plt.subplots(1, 1) ax.get_xaxis().set_visible(False) # Hide Ticks @savefig line_plot_table_data.png df.plot(table=np.round(df.T, 2), ax=ax)
Finally, there is a helper function pandas.tools.plotting.table
to create a table from :class:`DataFrame` and :class:`Series`, and add it to an matplotlib.Axes
. This function can accept keywords which matplotlib table has.
.. ipython:: python from pandas.tools.plotting import table fig, ax = plt.subplots(1, 1) table(ax, np.round(df.describe(), 2), loc='upper right', colWidths=[0.2, 0.2, 0.2]) @savefig line_plot_table_describe.png df.plot(ax=ax, ylim=(0, 2), legend=None)
Note: You can get table instances on the axes using axes.tables
property for further decorations. See the matplotlib table documenation for more.
A potential issue when plotting a large number of columns is that it can be
difficult to distinguish some series due to repetition in the default colors. To
remedy this, DataFrame plotting supports the use of the colormap=
argument,
which accepts either a Matplotlib colormap
or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available here.
As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible.
To use the cubhelix colormap, we can simply pass 'cubehelix'
to colormap=
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python df = DataFrame(randn(1000, 10), index=ts.index) df = df.cumsum() plt.figure() @savefig cubehelix.png df.plot(colormap='cubehelix')
or we can pass the colormap itself
.. ipython:: python from matplotlib import cm plt.figure() @savefig cubehelix_cm.png df.plot(colormap=cm.cubehelix)
Colormaps can also be used other plot types, like bar charts:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python dd = DataFrame(randn(10, 10)).applymap(abs) dd = dd.cumsum() plt.figure() @savefig greens.png dd.plot(kind='bar', colormap='Greens')
Parallel coordinates charts:
.. ipython:: python plt.figure() @savefig parallel_gist_rainbow.png parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Andrews curves charts:
.. ipython:: python plt.figure() @savefig andrews_curve_winter.png andrews_curves(data, 'Name', colormap='winter')
In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts.
pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.
Note
The speed up for large data sets only applies to pandas 0.14.0 and later.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python price = Series(randn(150).cumsum(), index=date_range('2000-1-1', periods=150, freq='B')) ma = pd.rolling_mean(price, 20) mstd = pd.rolling_std(price, 20) plt.figure() plt.plot(price.index, price, 'k') plt.plot(ma.index, ma, 'b') @savefig bollinger.png plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
.. ipython:: python :suppress: plt.close('all')