Skip to content

Backport PR #60940: ENH: Add dtype argument to str.decode #60968

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ Other enhancements
updated to raise FutureWarning with NumPy >= 2 (:issue:`60340`)
- :meth:`Series.str.decode` result now has ``StringDtype`` when ``future.infer_string`` is True (:issue:`60709`)
- :meth:`~Series.to_hdf` and :meth:`~DataFrame.to_hdf` now round-trip with ``StringDtype`` (:issue:`60663`)
- The :meth:`Series.str.decode` has gained the argument ``dtype`` to control the dtype of the result (:issue:`60940`)
- The :meth:`~Series.cumsum`, :meth:`~Series.cummin`, and :meth:`~Series.cummax` reductions are now implemented for ``StringDtype`` columns when backed by PyArrow (:issue:`60633`)
- The :meth:`~Series.sum` reduction is now implemented for ``StringDtype`` columns (:issue:`59853`)

Expand Down
18 changes: 16 additions & 2 deletions pandas/core/strings/accessor.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
is_list_like,
is_object_dtype,
is_re,
is_string_dtype,
)
from pandas.core.dtypes.dtypes import (
ArrowDtype,
Expand Down Expand Up @@ -1981,7 +1982,9 @@ def slice_replace(self, start=None, stop=None, repl=None):
result = self._data.array._str_slice_replace(start, stop, repl)
return self._wrap_result(result)

def decode(self, encoding, errors: str = "strict"):
def decode(
self, encoding, errors: str = "strict", dtype: str | DtypeObj | None = None
):
"""
Decode character string in the Series/Index using indicated encoding.

Expand All @@ -1992,6 +1995,14 @@ def decode(self, encoding, errors: str = "strict"):
----------
encoding : str
errors : str, optional
Specifies the error handling scheme.
Possible values are those supported by :meth:`bytes.decode`.
Comment on lines +1998 to +1999
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This doc created the conflict; not part of the origin PR I'm backporting but I figure why not add it.

dtype : str or dtype, optional
The dtype of the result. When not ``None``, must be either a string or
object dtype. When ``None``, the dtype of the result is determined by
``pd.options.future.infer_string``.

.. versionadded:: 2.3.0

Returns
-------
Expand All @@ -2008,6 +2019,10 @@ def decode(self, encoding, errors: str = "strict"):
2 ()
dtype: object
"""
if dtype is not None and not is_string_dtype(dtype):
raise ValueError(f"dtype must be string or object, got {dtype=}")
if dtype is None and get_option("future.infer_string"):
dtype = "str"
# TODO: Add a similar _bytes interface.
if encoding in _cpython_optimized_decoders:
# CPython optimized implementation
Expand All @@ -2017,7 +2032,6 @@ def decode(self, encoding, errors: str = "strict"):
f = lambda x: decoder(x, errors)[0]
arr = self._data.array
result = arr._str_map(f)
dtype = "str" if get_option("future.infer_string") else None
return self._wrap_result(result, dtype=dtype)

@forbid_nonstring_types(["bytes"])
Expand Down
18 changes: 16 additions & 2 deletions pandas/io/pytables.py
Original file line number Diff line number Diff line change
Expand Up @@ -4093,6 +4093,8 @@ def _create_axes(
ordered = data_converted.ordered
meta = "category"
metadata = np.asarray(data_converted.categories).ravel()
elif isinstance(blk.dtype, StringDtype):
meta = str(blk.dtype)

data, dtype_name = _get_data_and_dtype_name(data_converted)

Expand Down Expand Up @@ -4360,7 +4362,9 @@ def read_column(
encoding=self.encoding,
errors=self.errors,
)
return Series(_set_tz(col_values[1], a.tz), name=column, copy=False)
cvs = _set_tz(col_values[1], a.tz)
dtype = getattr(self.table.attrs, f"{column}_meta", None)
return Series(cvs, name=column, copy=False, dtype=dtype)

raise KeyError(f"column [{column}] not found in the table")

Expand Down Expand Up @@ -4708,8 +4712,18 @@ def read(
df = DataFrame._from_arrays([values], columns=cols_, index=index_)
if not (using_string_dtype() and values.dtype.kind == "O"):
assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)

# If str / string dtype is stored in meta, use that.
converted = False
for column in cols_:
dtype = getattr(self.table.attrs, f"{column}_meta", None)
if dtype in ["str", "string"]:
df[column] = df[column].astype(dtype)
converted = True
# Otherwise try inference.
if (
using_string_dtype()
not converted
and using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(
values,
Expand Down
3 changes: 0 additions & 3 deletions pandas/tests/io/pytables/test_append.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas._libs.tslibs import Timestamp
import pandas.util._test_decorators as td

Expand Down Expand Up @@ -507,7 +505,6 @@ def test_append_with_empty_string(setup_path):
tm.assert_frame_equal(store.select("df"), df)


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_append_with_data_columns(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
Expand Down
3 changes: 0 additions & 3 deletions pandas/tests/io/pytables/test_categorical.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas import (
Categorical,
DataFrame,
Expand Down Expand Up @@ -140,7 +138,6 @@ def test_categorical(setup_path):
store.select("df3/meta/s/meta")


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_categorical_conversion(tmp_path, setup_path):
# GH13322
# Check that read_hdf with categorical columns doesn't return rows if
Expand Down
3 changes: 0 additions & 3 deletions pandas/tests/io/pytables/test_read.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows

Expand Down Expand Up @@ -74,7 +72,6 @@ def test_read_missing_key_opened_store(tmp_path, setup_path):
read_hdf(store, "k1")


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_read_column(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
Expand Down
4 changes: 0 additions & 4 deletions pandas/tests/io/pytables/test_select.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas._libs.tslibs import Timestamp

import pandas as pd
Expand Down Expand Up @@ -651,7 +649,6 @@ def test_frame_select(setup_path):
# store.select('frame', [crit1, crit2])


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_frame_select_complex(setup_path):
# select via complex criteria

Expand Down Expand Up @@ -965,7 +962,6 @@ def test_query_long_float_literal(setup_path):
tm.assert_frame_equal(expected, result)


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_query_compare_column_type(setup_path):
# GH 15492
df = DataFrame(
Expand Down
24 changes: 24 additions & 0 deletions pandas/tests/strings/test_strings.py
Original file line number Diff line number Diff line change
Expand Up @@ -599,6 +599,30 @@ def test_decode_errors_kwarg():
tm.assert_series_equal(result, expected)


def test_decode_string_dtype(string_dtype):
# https://github.com/pandas-dev/pandas/pull/60940
ser = Series([b"a", b"b"])
result = ser.str.decode("utf-8", dtype=string_dtype)
expected = Series(["a", "b"], dtype=string_dtype)
tm.assert_series_equal(result, expected)


def test_decode_object_dtype(object_dtype):
# https://github.com/pandas-dev/pandas/pull/60940
ser = Series([b"a", rb"\ud800"])
result = ser.str.decode("utf-8", dtype=object_dtype)
expected = Series(["a", r"\ud800"], dtype=object_dtype)
tm.assert_series_equal(result, expected)


def test_decode_bad_dtype():
# https://github.com/pandas-dev/pandas/pull/60940
ser = Series([b"a", b"b"])
msg = "dtype must be string or object, got dtype='int64'"
with pytest.raises(ValueError, match=msg):
ser.str.decode("utf-8", dtype="int64")


@pytest.mark.parametrize(
"form, expected",
[
Expand Down
Loading