Skip to content

ENH: Add cumsum to ArrowExtensionArray #50389

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Dec 24, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -853,6 +853,45 @@ def _concat_same_type(
arr = pa.chunked_array(chunks)
return cls(arr)

def _accumulate(
self, name: str, *, skipna: bool = True, **kwargs
) -> ArrowExtensionArrayT:
"""
Return an ExtensionArray performing an accumulation operation.

The underlying data type might change.

Parameters
----------
name : str
Name of the function, supported values are:
- cummin
- cummax
- cumsum
- cumprod
skipna : bool, default True
If True, skip NA values.
**kwargs
Additional keyword arguments passed to the accumulation function.
Currently, there is no supported kwarg.

Returns
-------
array

Raises
------
NotImplementedError : subclass does not define accumulations
"""
pyarrow_name = {
"cumsum": "cumulative_sum_checked",
}.get(name, name)
pyarrow_meth = getattr(pc, pyarrow_name, None)
if pyarrow_meth is None:
return super()._accumulate(name, skipna=skipna, **kwargs)
result = pyarrow_meth(self._data, skip_nulls=skipna, **kwargs)
return type(self)(result)

def _reduce(self, name: str, *, skipna: bool = True, **kwargs):
"""
Return a scalar result of performing the reduction operation.
Expand Down
46 changes: 46 additions & 0 deletions pandas/tests/extension/test_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -343,6 +343,52 @@ def test_getitem_scalar(self, data):
super().test_getitem_scalar(data)


class TestBaseAccumulateTests(base.BaseAccumulateTests):
def check_accumulate(self, s, op_name, skipna):
result = getattr(s, op_name)(skipna=skipna).astype("Float64")
expected = getattr(s.astype("Float64"), op_name)(skipna=skipna)
self.assert_series_equal(result, expected, check_dtype=False)

@pytest.mark.parametrize("skipna", [True, False])
def test_accumulate_series_raises(
self, data, all_numeric_accumulations, skipna, request
):
pa_type = data.dtype.pyarrow_dtype
if (
pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type)
) and all_numeric_accumulations == "cumsum":
request.node.add_marker(
pytest.mark.xfail(
reason=f"{all_numeric_accumulations} implemented for {pa_type}"
)
)
op_name = all_numeric_accumulations
ser = pd.Series(data)

with pytest.raises(NotImplementedError):
getattr(ser, op_name)(skipna=skipna)

@pytest.mark.parametrize("skipna", [True, False])
def test_accumulate_series(self, data, all_numeric_accumulations, skipna, request):
pa_type = data.dtype.pyarrow_dtype
if all_numeric_accumulations != "cumsum":
request.node.add_marker(
pytest.mark.xfail(
reason=f"{all_numeric_accumulations} not implemented",
raises=NotImplementedError,
)
)
elif not (pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type)):
request.node.add_marker(
pytest.mark.xfail(
reason=f"{all_numeric_accumulations} not implemented for {pa_type}"
)
)
op_name = all_numeric_accumulations
ser = pd.Series(data)
self.check_accumulate(ser, op_name, skipna)


class TestBaseNumericReduce(base.BaseNumericReduceTests):
def check_reduce(self, ser, op_name, skipna):
pa_dtype = ser.dtype.pyarrow_dtype
Expand Down