Skip to content

REF: helpers to de-duplicate datetimelike arithmetic #48844

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 29, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 54 additions & 16 deletions pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -1112,6 +1112,41 @@ def _cmp_method(self, other, op):
__divmod__ = make_invalid_op("__divmod__")
__rdivmod__ = make_invalid_op("__rdivmod__")

@final
def _get_i8_values_and_mask(
self, other
) -> tuple[int | npt.NDArray[np.int64], None | npt.NDArray[np.bool_]]:
"""
Get the int64 values and b_mask to pass to checked_add_with_arr.
"""
if isinstance(other, Period):
i8values = other.ordinal
mask = None
elif isinstance(other, Timestamp):
i8values = other.value
mask = None
else:
# PeriodArray, DatetimeArray, TimedeltaArray
mask = other._isnan
i8values = other.asi8
return i8values, mask

@final
def _get_arithmetic_result_freq(self, other) -> BaseOffset | None:
"""
Check if we can preserve self.freq in addition or subtraction.
"""
# Adding or subtracting a Timedelta/Timestamp scalar is freq-preserving
# whenever self.freq is a Tick
if is_period_dtype(self.dtype):
return self.freq
elif not lib.is_scalar(other):
return None
elif isinstance(self.freq, Tick):
# In these cases
return self.freq
return None

@final
def _add_datetimelike_scalar(self, other) -> DatetimeArray:
if not is_timedelta64_dtype(self.dtype):
Expand Down Expand Up @@ -1228,15 +1263,7 @@ def _sub_period(self, other: Period) -> npt.NDArray[np.object_]:
# If the operation is well-defined, we return an object-dtype ndarray
# of DateOffsets. Null entries are filled with pd.NaT
self._check_compatible_with(other)
new_i8_data = checked_add_with_arr(
self.asi8, -other.ordinal, arr_mask=self._isnan
)
new_data = np.array([self.freq.base * x for x in new_i8_data])

if self._hasna:
new_data[self._isnan] = NaT

return new_data
return self._sub_periodlike(other)

@final
def _add_period(self, other: Period) -> PeriodArray:
Expand Down Expand Up @@ -1361,15 +1388,26 @@ def _sub_period_array(self, other: PeriodArray) -> npt.NDArray[np.object_]:
self = cast("PeriodArray", self)
self._require_matching_freq(other)

new_i8_values = checked_add_with_arr(
self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan
return self._sub_periodlike(other)

@final
def _sub_periodlike(self, other: Period | PeriodArray) -> npt.NDArray[np.object_]:
# caller is responsible for calling
# require_matching_freq/check_compatible_with
other_i8, o_mask = self._get_i8_values_and_mask(other)
new_i8_data = checked_add_with_arr(
self.asi8, -other_i8, arr_mask=self._isnan, b_mask=o_mask
)
new_data = np.array([self.freq.base * x for x in new_i8_data])

new_values = np.array([self.freq.base * x for x in new_i8_values])
if self._hasna or other._hasna:
mask = self._isnan | other._isnan
new_values[mask] = NaT
return new_values
if o_mask is None:
# i.e. Period scalar
mask = self._isnan
else:
# i.e. PeriodArray
mask = self._isnan | o_mask
new_data[mask] = NaT
return new_data

@final
def _addsub_object_array(self, other: np.ndarray, op):
Expand Down