Skip to content

TST: Split/parameterize indexing tests #45325

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jan 13, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 12 additions & 12 deletions pandas/tests/indexing/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -704,20 +704,20 @@ def run_tests(df, rhs, right_loc, right_iloc):
right_iloc["jolie"] = ["@2", -26.0, -18.0, -10.0, "@18"]
run_tests(df, rhs, right_loc, right_iloc)

def test_str_label_slicing_with_negative_step(self):
@pytest.mark.parametrize(
"idx", [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]
)
def test_str_label_slicing_with_negative_step(self, idx):
SLC = pd.IndexSlice

for idx in [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]:
idx = Index(idx)
ser = Series(np.arange(20), index=idx)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
tm.assert_indexing_slices_equivalent(
ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
)
tm.assert_indexing_slices_equivalent(
ser, SLC[idx[9] : idx[13] : -1], SLC[:0]
)
idx = Index(idx)
ser = Series(np.arange(20), index=idx)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
tm.assert_indexing_slices_equivalent(
ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] : idx[13] : -1], SLC[:0])

def test_slice_with_zero_step_raises(self, index, indexer_sl, frame_or_series):
obj = frame_or_series(np.arange(len(index)), index=index)
Expand Down
199 changes: 101 additions & 98 deletions pandas/tests/indexing/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,42 +54,45 @@ def test_loc_getitem_label(self):
# label
self.check_result("loc", "c", typs=["empty"], fails=KeyError)

def test_loc_getitem_label_out_of_range(self):
@pytest.mark.parametrize(
"key, typs, axes",
[
["f", ["ints", "uints", "labels", "mixed", "ts"], None],
["f", ["floats"], None],
[20, ["ints", "uints", "mixed"], None],
[20, ["labels"], None],
[20, ["ts"], 0],
[20, ["floats"], 0],
],
)
def test_loc_getitem_label_out_of_range(self, key, typs, axes):

# out of range label
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

does this comment apply to all of these or just the one currently on L60?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this comment applies to all cases.

self.check_result(
"loc", "f", typs=["ints", "uints", "labels", "mixed", "ts"], fails=KeyError
)
self.check_result("loc", "f", typs=["floats"], fails=KeyError)
self.check_result("loc", "f", typs=["floats"], fails=KeyError)
self.check_result("loc", 20, typs=["ints", "uints", "mixed"], fails=KeyError)
self.check_result("loc", 20, typs=["labels"], fails=KeyError)
self.check_result("loc", 20, typs=["ts"], axes=0, fails=KeyError)
self.check_result("loc", 20, typs=["floats"], axes=0, fails=KeyError)
self.check_result("loc", key, typs=typs, axes=axes, fails=KeyError)

def test_loc_getitem_label_list(self):
@pytest.mark.parametrize(
"key, typs",
[
[[0, 1, 2], ["ints", "uints", "floats"]],
[[1, 3.0, "A"], ["ints", "uints", "floats"]],
],
)
def test_loc_getitem_label_list(self, key, typs):
# list of labels
self.check_result(
"loc", [0, 1, 2], typs=["ints", "uints", "floats"], fails=KeyError
)
self.check_result(
"loc", [1, 3.0, "A"], typs=["ints", "uints", "floats"], fails=KeyError
)

def test_loc_getitem_label_list_with_missing(self):
self.check_result("loc", [0, 1, 2], typs=["empty"], fails=KeyError)
self.check_result(
"loc", [0, 2, 10], typs=["ints", "uints", "floats"], axes=0, fails=KeyError
)
self.check_result("loc", key, typs=typs, fails=KeyError)

self.check_result(
"loc", [3, 6, 7], typs=["ints", "uints", "floats"], axes=1, fails=KeyError
)

# GH 17758 - MultiIndex and missing keys
self.check_result(
"loc", [(1, 3), (1, 4), (2, 5)], typs=["multi"], axes=0, fails=KeyError
)
@pytest.mark.parametrize(
"key, typs, axes",
[
[[0, 1, 2], ["empty"], None],
[[0, 2, 10], ["ints", "uints", "floats"], 0],
[[3, 6, 7], ["ints", "uints", "floats"], 1],
# GH 17758 - MultiIndex and missing keys
[[(1, 3), (1, 4), (2, 5)], ["multi"], 0],
],
)
def test_loc_getitem_label_list_with_missing(self, key, typs, axes):
self.check_result("loc", key, typs=typs, axes=axes, fails=KeyError)

def test_loc_getitem_label_list_fails(self):
# fails
Expand All @@ -108,7 +111,22 @@ def test_loc_getitem_bool(self):

self.check_result("loc", b, typs=["empty"], fails=IndexError)

def test_loc_getitem_label_slice(self):
@pytest.mark.parametrize(
"slc, typs, axes, fails",
[
[
slice(1, 3),
["labels", "mixed", "empty", "ts", "floats"],
None,
TypeError,
],
[slice("20130102", "20130104"), ["ts"], 1, TypeError],
[slice(2, 8), ["mixed"], 0, TypeError],
[slice(2, 8), ["mixed"], 1, KeyError],
[slice(2, 4, 2), ["mixed"], 0, TypeError],
],
)
def test_loc_getitem_label_slice(self, slc, typs, axes, fails):

# label slices (with ints)

Expand All @@ -118,20 +136,10 @@ def test_loc_getitem_label_slice(self):

self.check_result(
"loc",
slice(1, 3),
typs=["labels", "mixed", "empty", "ts", "floats"],
fails=TypeError,
)

self.check_result(
"loc", slice("20130102", "20130104"), typs=["ts"], axes=1, fails=TypeError
)

self.check_result("loc", slice(2, 8), typs=["mixed"], axes=0, fails=TypeError)
self.check_result("loc", slice(2, 8), typs=["mixed"], axes=1, fails=KeyError)

self.check_result(
"loc", slice(2, 4, 2), typs=["mixed"], axes=0, fails=TypeError
slc,
typs=typs,
axes=axes,
fails=fails,
)

def test_setitem_from_duplicate_axis(self):
Expand Down Expand Up @@ -956,55 +964,40 @@ def test_loc_non_unique(self):
tm.assert_frame_equal(result, expected)

@pytest.mark.arm_slow
def test_loc_non_unique_memory_error(self):
@pytest.mark.parametrize("length, l2", [[900, 100], [900000, 100000]])
def test_loc_non_unique_memory_error(self, length, l2):

# GH 4280
# non_unique index with a large selection triggers a memory error

columns = list("ABCDEFG")

def gen_test(length, l2):
return pd.concat(
[
DataFrame(
np.random.randn(length, len(columns)),
index=np.arange(length),
columns=columns,
),
DataFrame(
np.ones((l2, len(columns))), index=[0] * l2, columns=columns
),
]
)

def gen_expected(df, mask):
len_mask = len(mask)
return pd.concat(
[
df.take([0]),
DataFrame(
np.ones((len_mask, len(columns))),
index=[0] * len_mask,
columns=columns,
),
df.take(mask[1:]),
]
)

df = gen_test(900, 100)
assert df.index.is_unique is False

mask = np.arange(100)
result = df.loc[mask]
expected = gen_expected(df, mask)
tm.assert_frame_equal(result, expected)
df = pd.concat(
[
DataFrame(
np.random.randn(length, len(columns)),
index=np.arange(length),
columns=columns,
),
DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns),
]
)

df = gen_test(900000, 100000)
assert df.index.is_unique is False

mask = np.arange(100000)
mask = np.arange(l2)
result = df.loc[mask]
expected = gen_expected(df, mask)
expected = pd.concat(
[
df.take([0]),
DataFrame(
np.ones((len(mask), len(columns))),
index=[0] * len(mask),
columns=columns,
),
df.take(mask[1:]),
]
)
tm.assert_frame_equal(result, expected)

def test_loc_name(self):
Expand Down Expand Up @@ -1840,12 +1833,20 @@ def test_loc_setitem_empty_series(self):
ser.loc[3] = 3
tm.assert_series_equal(ser, Series([1, 3], index=[1, 3]))

def test_loc_setitem_empty_series_float(self):
# GH#5226

# partially set with an empty object series
ser = Series(dtype=object)
ser.loc[1] = 1.0
tm.assert_series_equal(ser, Series([1.0], index=[1]))
ser.loc[3] = 3.0
tm.assert_series_equal(ser, Series([1.0, 3.0], index=[1, 3]))

def test_loc_setitem_empty_series_str_idx(self):
# GH#5226

# partially set with an empty object series
ser = Series(dtype=object)
ser.loc["foo"] = 1
tm.assert_series_equal(ser, Series([1], index=["foo"]))
Expand All @@ -1864,24 +1865,26 @@ def test_loc_setitem_incremental_with_dst(self):
expected = Series(1, index=idxs)
tm.assert_series_equal(result, expected)

def test_loc_setitem_datetime_keys_cast(self):
# GH#9516
dt1 = Timestamp("20130101 09:00:00")
dt2 = Timestamp("20130101 10:00:00")

for conv in [
@pytest.mark.parametrize(
"conv",
[
lambda x: x,
lambda x: x.to_datetime64(),
lambda x: x.to_pydatetime(),
lambda x: np.datetime64(x),
]:

df = DataFrame()
df.loc[conv(dt1), "one"] = 100
df.loc[conv(dt2), "one"] = 200
],
ids=["self", "to_datetime64", "to_pydatetime", "np.datetime64"],
)
def test_loc_setitem_datetime_keys_cast(self, conv):
# GH#9516
dt1 = Timestamp("20130101 09:00:00")
dt2 = Timestamp("20130101 10:00:00")
df = DataFrame()
df.loc[conv(dt1), "one"] = 100
df.loc[conv(dt2), "one"] = 200

expected = DataFrame({"one": [100.0, 200.0]}, index=[dt1, dt2])
tm.assert_frame_equal(df, expected)
expected = DataFrame({"one": [100.0, 200.0]}, index=[dt1, dt2])
tm.assert_frame_equal(df, expected)

def test_loc_setitem_categorical_column_retains_dtype(self, ordered):
# GH16360
Expand Down
60 changes: 17 additions & 43 deletions pandas/tests/indexing/test_scalar.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,33 +19,6 @@


class TestScalar(Base):
@pytest.mark.parametrize("kind", ["series", "frame"])
def test_at_and_iat_get(self, kind):
def _check(f, func, values=False):

if f is not None:
indices = self.generate_indices(f, values)
for i in indices:
result = getattr(f, func)[i]
expected = self.get_value(func, f, i, values)
tm.assert_almost_equal(result, expected)

d = getattr(self, kind)

# iat
for f in [d["ints"], d["uints"]]:
_check(f, "iat", values=True)

for f in [d["labels"], d["ts"], d["floats"]]:
if f is not None:
msg = "iAt based indexing can only have integer indexers"
with pytest.raises(ValueError, match=msg):
self.check_values(f, "iat")

# at
for f in [d["ints"], d["uints"], d["labels"], d["ts"], d["floats"]]:
_check(f, "at")

@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize("col", ["ints", "uints"])
def test_iat_set_ints(self, kind, col):
Expand Down Expand Up @@ -103,24 +76,25 @@ def test_at_iat_coercion(self):
xp = s.values[5]
assert result == xp

@pytest.mark.parametrize("idx", [lambda ser: ser.iat[1], lambda ser: ser.iloc[1]])
@pytest.mark.parametrize(
"ser, expected",
[
[
Series(["2014-01-01", "2014-02-02"], dtype="datetime64[ns]"),
Timestamp("2014-02-02"),
],
[
Series(["1 days", "2 days"], dtype="timedelta64[ns]"),
Timedelta("2 days"),
],
],
)
def test_iloc_iat_coercion_datelike(self, idx, ser, expected):
# GH 7729
# make sure we are boxing the returns
s = Series(["2014-01-01", "2014-02-02"], dtype="datetime64[ns]")
expected = Timestamp("2014-02-02")

for r in [lambda: s.iat[1], lambda: s.iloc[1]]:
result = r()
assert result == expected

s = Series(["1 days", "2 days"], dtype="timedelta64[ns]")
expected = Timedelta("2 days")

for r in [lambda: s.iat[1], lambda: s.iloc[1]]:
result = r()
assert result == expected

def test_iat_invalid_args(self):
pass
result = idx(ser)
assert result == expected

def test_imethods_with_dups(self):

Expand Down