Skip to content

World Bank I/O docs and minimal improvement #4364

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 25, 2013
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions doc/source/io.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2584,3 +2584,123 @@ Tthe dataset names are listed at `Fama/French Data Library
import pandas.io.data as web
ip=web.DataReader("5_Industry_Portfolios", "famafrench")
ip[4].ix[192607]


World Bank panel data in Pandas
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``Pandas`` users can easily access thousands of panel data series from the
`World Bank's World Development Indicators <http://data.worldbank.org>`_
by using the ``wb`` I/O functions.

For example, if you wanted to compare the Gross Domestic Products per capita in
constant dollars in North America, you would use the ``search`` function:

.. code:: python

In [1]: from pandas.io.wb import search, download

In [2]: search('gdp.*capita.*const').iloc[:,:2]
Out[2]:
id name
3242 GDPPCKD GDP per Capita, constant US$, millions
5143 NY.GDP.PCAP.KD GDP per capita (constant 2005 US$)
5145 NY.GDP.PCAP.KN GDP per capita (constant LCU)
5147 NY.GDP.PCAP.PP.KD GDP per capita, PPP (constant 2005 internation...

Then you would use the ``download`` function to acquire the data from the World
Bank's servers:

.. code:: python

In [3]: dat = download(indicator='NY.GDP.PCAP.KD', country=['US', 'CA', 'MX'], start=2005, end=2008)

In [4]: print dat
NY.GDP.PCAP.KD
country year
Canada 2008 36005.5004978584
2007 36182.9138439757
2006 35785.9698172849
2005 35087.8925933298
Mexico 2008 8113.10219480083
2007 8119.21298908649
2006 7961.96818458178
2005 7666.69796097264
United States 2008 43069.5819857208
2007 43635.5852068142
2006 43228.111147107
2005 42516.3934699993

The resulting dataset is a properly formatted ``DataFrame`` with a hierarchical
index, so it is easy to apply ``.groupby`` transformations to it:

.. code:: python

In [6]: dat['NY.GDP.PCAP.KD'].groupby(level=0).mean()
Out[6]:
country
Canada 35765.569188
Mexico 7965.245332
United States 43112.417952
dtype: float64

Now imagine you want to compare GDP to the share of people with cellphone
contracts around the world.

.. code:: python

In [7]: search('cell.*%').iloc[:,:2]
Out[7]:
id name
3990 IT.CEL.SETS.FE.ZS Mobile cellular telephone users, female (% of ...
3991 IT.CEL.SETS.MA.ZS Mobile cellular telephone users, male (% of po...
4027 IT.MOB.COV.ZS Population coverage of mobile cellular telepho...

Notice that this second search was much faster than the first one because
``Pandas`` now has a cached list of available data series.

.. code:: python

In [13]: ind = ['NY.GDP.PCAP.KD', 'IT.MOB.COV.ZS']
In [14]: dat = download(indicator=ind, country='all', start=2011, end=2011).dropna()
In [15]: dat.columns = ['gdp', 'cellphone']
In [16]: print dat.tail()
gdp cellphone
country year
Swaziland 2011 2413.952853 94.9
Tunisia 2011 3687.340170 100.0
Uganda 2011 405.332501 100.0
Zambia 2011 767.911290 62.0
Zimbabwe 2011 419.236086 72.4

Finally, we use the ``statsmodels`` package to assess the relationship between
our two variables using ordinary least squares regression. Unsurprisingly,
populations in rich countries tend to use cellphones at a higher rate:

.. code:: python

In [17]: import numpy as np
In [18]: import statsmodels.formula.api as smf
In [19]: mod = smf.ols("cellphone ~ np.log(gdp)", dat).fit()
In [20]: print mod.summary()
OLS Regression Results
==============================================================================
Dep. Variable: cellphone R-squared: 0.297
Model: OLS Adj. R-squared: 0.274
Method: Least Squares F-statistic: 13.08
Date: Thu, 25 Jul 2013 Prob (F-statistic): 0.00105
Time: 15:24:42 Log-Likelihood: -139.16
No. Observations: 33 AIC: 282.3
Df Residuals: 31 BIC: 285.3
Df Model: 1
===============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
-------------------------------------------------------------------------------
Intercept 16.5110 19.071 0.866 0.393 -22.384 55.406
np.log(gdp) 9.9333 2.747 3.616 0.001 4.331 15.535
==============================================================================
Omnibus: 36.054 Durbin-Watson: 2.071
Prob(Omnibus): 0.000 Jarque-Bera (JB): 119.133
Skew: -2.314 Prob(JB): 1.35e-26
Kurtosis: 11.077 Cond. No. 45.8
==============================================================================
1 change: 1 addition & 0 deletions pandas/io/wb.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ def download(country=['MX', 'CA', 'US'], indicator=['GDPPCKD', 'GDPPCKN'],
# Clean
out = out.drop('iso2c', axis=1)
out = out.set_index(['country', 'year'])
out = out.convert_objects(convert_numeric=True)
return out


Expand Down