Skip to content

CLN: moments/test_moments_rolling.py for apply #36676

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Sep 26, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 0 additions & 19 deletions pandas/tests/window/moments/test_moments_rolling.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import copy
import warnings

import numpy as np
from numpy.random import randn
Expand Down Expand Up @@ -856,24 +855,6 @@ def test_rolling_quantile_param():
ser.rolling(3).quantile("foo")


def test_rolling_apply(raw, series, frame):
# suppress warnings about empty slices, as we are deliberately testing
# with a 0-length Series

def f(x):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message=".*(empty slice|0 for slice).*",
category=RuntimeWarning,
)
return x[np.isfinite(x)].mean()

_check_moment_func(
np.mean, name="apply", func=f, raw=raw, series=series, frame=frame
)


def test_rolling_std(raw, series, frame):
_check_moment_func(
lambda x: np.std(x, ddof=1), name="std", raw=raw, series=series, frame=frame
Expand Down
151 changes: 151 additions & 0 deletions pandas/tests/window/moments/test_moments_rolling_apply.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
import warnings

import numpy as np
import pytest

from pandas import DataFrame, Series, concat, isna, notna
import pandas._testing as tm

import pandas.tseries.offsets as offsets


def f(x):
# suppress warnings about empty slices, as we are deliberately testing
# with a 0-length Series
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message=".*(empty slice|0 for slice).*",
category=RuntimeWarning,
)
return x[np.isfinite(x)].mean()


def test_series(raw, series):
result = series.rolling(50).apply(f, raw=raw)
assert isinstance(result, Series)
tm.assert_almost_equal(result.iloc[-1], np.mean(series[-50:]))


def test_frame(raw, frame):
result = frame.rolling(50).apply(f, raw=raw)
assert isinstance(result, DataFrame)
tm.assert_series_equal(
result.iloc[-1, :],
frame.iloc[-50:, :].apply(np.mean, axis=0, raw=raw),
check_names=False,
)


def test_time_rule_series(raw, series):
win = 25
minp = 10
ser = series[::2].resample("B").mean()
series_result = ser.rolling(window=win, min_periods=minp).apply(f, raw=raw)
last_date = series_result.index[-1]
prev_date = last_date - 24 * offsets.BDay()

trunc_series = series[::2].truncate(prev_date, last_date)
tm.assert_almost_equal(series_result[-1], np.mean(trunc_series))


def test_time_rule_frame(raw, frame):
win = 25
minp = 10
frm = frame[::2].resample("B").mean()
frame_result = frm.rolling(window=win, min_periods=minp).apply(f, raw=raw)
last_date = frame_result.index[-1]
prev_date = last_date - 24 * offsets.BDay()

trunc_frame = frame[::2].truncate(prev_date, last_date)
tm.assert_series_equal(
frame_result.xs(last_date),
trunc_frame.apply(np.mean, raw=raw),
check_names=False,
)


def test_nans(raw):
obj = Series(np.random.randn(50))
obj[:10] = np.NaN
obj[-10:] = np.NaN

result = obj.rolling(50, min_periods=30).apply(f, raw=raw)
tm.assert_almost_equal(result.iloc[-1], np.mean(obj[10:-10]))

# min_periods is working correctly
result = obj.rolling(20, min_periods=15).apply(f, raw=raw)
assert isna(result.iloc[23])
assert not isna(result.iloc[24])

assert not isna(result.iloc[-6])
assert isna(result.iloc[-5])

obj2 = Series(np.random.randn(20))
result = obj2.rolling(10, min_periods=5).apply(f, raw=raw)
assert isna(result.iloc[3])
assert notna(result.iloc[4])

result0 = obj.rolling(20, min_periods=0).apply(f, raw=raw)
result1 = obj.rolling(20, min_periods=1).apply(f, raw=raw)
tm.assert_almost_equal(result0, result1)


@pytest.mark.parametrize("minp", [0, 99, 100])
def test_min_periods(raw, series, minp):
result = series.rolling(len(series) + 1, min_periods=minp).apply(f, raw=raw)
expected = series.rolling(len(series), min_periods=minp).apply(f, raw=raw)
nan_mask = isna(result)
tm.assert_series_equal(nan_mask, isna(expected))

nan_mask = ~nan_mask
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])


def test_center(raw):
obj = Series(np.random.randn(50))
obj[:10] = np.NaN
obj[-10:] = np.NaN

result = obj.rolling(20, min_periods=15, center=True).apply(f, raw=raw)
expected = (
concat([obj, Series([np.NaN] * 9)])
.rolling(20, min_periods=15)
.apply(f, raw=raw)[9:]
.reset_index(drop=True)
)
tm.assert_series_equal(result, expected)


def test_center_reindex_series(raw, series):
# shifter index
s = [f"x{x:d}" for x in range(12)]
minp = 10

series_xp = (
series.reindex(list(series.index) + s)
.rolling(window=25, min_periods=minp)
.apply(f, raw=raw)
.shift(-12)
.reindex(series.index)
)
series_rs = series.rolling(window=25, min_periods=minp, center=True).apply(
f, raw=raw
)
tm.assert_series_equal(series_xp, series_rs)


def test_center_reindex_frame(raw, frame):
# shifter index
s = [f"x{x:d}" for x in range(12)]
minp = 10

frame_xp = (
frame.reindex(list(frame.index) + s)
.rolling(window=25, min_periods=minp)
.apply(f, raw=raw)
.shift(-12)
.reindex(frame.index)
)
frame_rs = frame.rolling(window=25, min_periods=minp, center=True).apply(f, raw=raw)
tm.assert_frame_equal(frame_xp, frame_rs)