Skip to content

REF: collect to_xarray tests #32877

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Mar 22, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 0 additions & 100 deletions pandas/tests/generic/test_frame.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,15 @@
from copy import deepcopy
from distutils.version import LooseVersion
from operator import methodcaller

import numpy as np
import pytest

import pandas.util._test_decorators as td

from pandas.core.dtypes.generic import ABCMultiIndex

import pandas as pd
from pandas import DataFrame, MultiIndex, Series, date_range
import pandas._testing as tm

from .test_generic import Generic

try:
import xarray

_XARRAY_INSTALLED = True
except ImportError:
_XARRAY_INSTALLED = False


class TestDataFrame(Generic):
_typ = DataFrame
Expand Down Expand Up @@ -238,91 +226,3 @@ def test_unexpected_keyword(self):

with pytest.raises(TypeError, match=msg):
ts.fillna(0, in_place=True)


class TestToXArray:
@pytest.mark.skipif(
not _XARRAY_INSTALLED
or _XARRAY_INSTALLED
and LooseVersion(xarray.__version__) < LooseVersion("0.10.0"),
reason="xarray >= 0.10.0 required",
)
def test_to_xarray_index_types(self, indices):
if isinstance(indices, ABCMultiIndex):
pytest.skip("MultiIndex is tested separately")
if len(indices) == 0:
pytest.skip("Test doesn't make sense for empty index")

from xarray import Dataset

df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)

df.index = indices[:3]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
assert result.dims["foo"] == 3
assert len(result.coords) == 1
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, Dataset)

# idempotency
# datetimes w/tz are preserved
# column names are lost
expected = df.copy()
expected["f"] = expected["f"].astype(object)
expected.columns.name = None
tm.assert_frame_equal(
result.to_dataframe(), expected,
)

@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray(self):
from xarray import Dataset

df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)

df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.dims["foo"] == 0
assert isinstance(result, Dataset)

# available in 0.7.1
# MultiIndex
df.index = pd.MultiIndex.from_product([["a"], range(3)], names=["one", "two"])
result = df.to_xarray()
assert result.dims["one"] == 1
assert result.dims["two"] == 3
assert len(result.coords) == 2
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, Dataset)

result = result.to_dataframe()
expected = df.copy()
expected["f"] = expected["f"].astype(object)
expected.columns.name = None
tm.assert_frame_equal(result, expected, check_index_type=False)
64 changes: 0 additions & 64 deletions pandas/tests/generic/test_series.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,14 @@
from distutils.version import LooseVersion
from operator import methodcaller

import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import MultiIndex, Series, date_range
import pandas._testing as tm

from ...core.dtypes.generic import ABCMultiIndex
from .test_generic import Generic

try:
import xarray

_XARRAY_INSTALLED = True
except ImportError:
_XARRAY_INSTALLED = False


class TestSeries(Generic):
_typ = Series
Expand Down Expand Up @@ -199,56 +188,3 @@ def test_datetime_shift_always_copy(self, move_by_freq):
# GH22397
s = pd.Series(range(5), index=pd.date_range("2017", periods=5))
assert s.shift(freq=move_by_freq) is not s


class TestToXArray:
@pytest.mark.skipif(
not _XARRAY_INSTALLED
or _XARRAY_INSTALLED
and LooseVersion(xarray.__version__) < LooseVersion("0.10.0"),
reason="xarray >= 0.10.0 required",
)
def test_to_xarray_index_types(self, indices):
if isinstance(indices, ABCMultiIndex):
pytest.skip("MultiIndex is tested separately")

from xarray import DataArray

s = Series(range(len(indices)), index=indices, dtype="object")
s.index.name = "foo"
result = s.to_xarray()
repr(result)
assert len(result) == len(indices)
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)

# idempotency
tm.assert_series_equal(result.to_series(), s, check_index_type=False)

@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray_multiindex(self):
from xarray import DataArray

s = Series(range(6))
s.index.name = "foo"
s.index = pd.MultiIndex.from_product(
[["a", "b"], range(3)], names=["one", "two"]
)
result = s.to_xarray()
assert len(result) == 2
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, DataArray)
tm.assert_series_equal(result.to_series(), s)

@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray(self):
from xarray import DataArray

s = Series([], dtype=object)
s.index.name = "foo"
result = s.to_xarray()
assert len(result) == 0
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
154 changes: 154 additions & 0 deletions pandas/tests/generic/test_to_xarray.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
from distutils.version import LooseVersion

import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import DataFrame, Series
import pandas._testing as tm

try:
import xarray

_XARRAY_INSTALLED = True
except ImportError:
_XARRAY_INSTALLED = False


class TestDataFrameToXArray:
@pytest.mark.skipif(
not _XARRAY_INSTALLED
or _XARRAY_INSTALLED
and LooseVersion(xarray.__version__) < LooseVersion("0.10.0"),
reason="xarray >= 0.10.0 required",
)
def test_to_xarray_index_types(self, indices):
if isinstance(indices, pd.MultiIndex):
pytest.skip("MultiIndex is tested separately")
if len(indices) == 0:
pytest.skip("Test doesn't make sense for empty index")

from xarray import Dataset

df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)

df.index = indices[:3]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
assert result.dims["foo"] == 3
assert len(result.coords) == 1
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, Dataset)

# idempotency
# datetimes w/tz are preserved
# column names are lost
expected = df.copy()
expected["f"] = expected["f"].astype(object)
expected.columns.name = None
tm.assert_frame_equal(
result.to_dataframe(), expected,
)

@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray(self):
from xarray import Dataset

df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)

df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.dims["foo"] == 0
assert isinstance(result, Dataset)

# available in 0.7.1
# MultiIndex
df.index = pd.MultiIndex.from_product([["a"], range(3)], names=["one", "two"])
result = df.to_xarray()
assert result.dims["one"] == 1
assert result.dims["two"] == 3
assert len(result.coords) == 2
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, Dataset)

result = result.to_dataframe()
expected = df.copy()
expected["f"] = expected["f"].astype(object)
expected.columns.name = None
tm.assert_frame_equal(result, expected, check_index_type=False)


class TestSeriesToXArray:
@pytest.mark.skipif(
not _XARRAY_INSTALLED
or _XARRAY_INSTALLED
and LooseVersion(xarray.__version__) < LooseVersion("0.10.0"),
reason="xarray >= 0.10.0 required",
)
def test_to_xarray_index_types(self, indices):
if isinstance(indices, pd.MultiIndex):
pytest.skip("MultiIndex is tested separately")

from xarray import DataArray

s = Series(range(len(indices)), index=indices)
s.index.name = "foo"
result = s.to_xarray()
repr(result)
assert len(result) == len(indices)
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)

# idempotency
tm.assert_series_equal(result.to_series(), s, check_index_type=False)

@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray(self):
from xarray import DataArray

s = Series([], dtype=object)
s.index.name = "foo"
result = s.to_xarray()
assert len(result) == 0
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)

s = Series(range(6))
s.index.name = "foo"
s.index = pd.MultiIndex.from_product(
[["a", "b"], range(3)], names=["one", "two"]
)
result = s.to_xarray()
assert len(result) == 2
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, DataArray)
tm.assert_series_equal(result.to_series(), s)