Skip to content

IntervalArray equality follow-ups #30715

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jan 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions pandas/core/indexes/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
maybe_extract_name,
)
from pandas.core.indexes.datetimes import DatetimeIndex, date_range
from pandas.core.indexes.extension import make_wrapped_comparison_op
from pandas.core.indexes.multi import MultiIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex, timedelta_range
from pandas.core.ops import get_op_result_name
Expand Down Expand Up @@ -205,9 +206,7 @@ def func(intvidx_self, other, sort=False):
"__array__",
"overlaps",
"contains",
"__eq__",
"__len__",
"__ne__",
"set_closed",
"to_tuples",
],
Expand All @@ -231,8 +230,6 @@ class IntervalIndex(IntervalMixin, ExtensionIndex, accessor.PandasDelegate):
"__array__",
"overlaps",
"contains",
"__eq__",
"__ne__",
}

# --------------------------------------------------------------------
Expand Down Expand Up @@ -1206,7 +1203,14 @@ def _delegate_method(self, name, *args, **kwargs):
return type(self)._simple_new(res, name=self.name)
return Index(res)

@classmethod
def _add_comparison_methods(cls):
""" add in comparison methods """
cls.__eq__ = make_wrapped_comparison_op("__eq__")
cls.__ne__ = make_wrapped_comparison_op("__ne__")


IntervalIndex._add_comparison_methods()
IntervalIndex._add_logical_methods_disabled()


Expand Down
273 changes: 273 additions & 0 deletions pandas/tests/arithmetic/test_interval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
import operator

import numpy as np
import pytest

from pandas.core.dtypes.common import is_list_like

import pandas as pd
from pandas import (
Categorical,
Index,
Interval,
IntervalIndex,
Period,
Series,
Timedelta,
Timestamp,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import IntervalArray


@pytest.fixture(
params=[
(Index([0, 2, 4, 4]), Index([1, 3, 5, 8])),
(Index([0.0, 1.0, 2.0, np.nan]), Index([1.0, 2.0, 3.0, np.nan])),
(
timedelta_range("0 days", periods=3).insert(4, pd.NaT),
timedelta_range("1 day", periods=3).insert(4, pd.NaT),
),
(
date_range("20170101", periods=3).insert(4, pd.NaT),
date_range("20170102", periods=3).insert(4, pd.NaT),
),
(
date_range("20170101", periods=3, tz="US/Eastern").insert(4, pd.NaT),
date_range("20170102", periods=3, tz="US/Eastern").insert(4, pd.NaT),
),
],
ids=lambda x: str(x[0].dtype),
)
def left_right_dtypes(request):
"""
Fixture for building an IntervalArray from various dtypes
"""
return request.param


@pytest.fixture
def array(left_right_dtypes):
"""
Fixture to generate an IntervalArray of various dtypes containing NA if possible
"""
left, right = left_right_dtypes
return IntervalArray.from_arrays(left, right)


def create_categorical_intervals(left, right, closed="right"):
return Categorical(IntervalIndex.from_arrays(left, right, closed))


def create_series_intervals(left, right, closed="right"):
return Series(IntervalArray.from_arrays(left, right, closed))


def create_series_categorical_intervals(left, right, closed="right"):
return Series(Categorical(IntervalIndex.from_arrays(left, right, closed)))


class TestComparison:
@pytest.fixture(params=[operator.eq, operator.ne])
def op(self, request):
return request.param

@pytest.fixture(
params=[
IntervalArray.from_arrays,
IntervalIndex.from_arrays,
create_categorical_intervals,
create_series_intervals,
create_series_categorical_intervals,
],
ids=[
"IntervalArray",
"IntervalIndex",
"Categorical[Interval]",
"Series[Interval]",
"Series[Categorical[Interval]]",
],
)
def interval_constructor(self, request):
"""
Fixture for all pandas native interval constructors.
To be used as the LHS of IntervalArray comparisons.
"""
return request.param

def elementwise_comparison(self, op, array, other):
"""
Helper that performs elementwise comparisions between `array` and `other`
"""
other = other if is_list_like(other) else [other] * len(array)
return np.array([op(x, y) for x, y in zip(array, other)])

def test_compare_scalar_interval(self, op, array):
# matches first interval
other = array[0]
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

# matches on a single endpoint but not both
other = Interval(array.left[0], array.right[1])
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

def test_compare_scalar_interval_mixed_closed(self, op, closed, other_closed):
array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed)
other = Interval(0, 1, closed=other_closed)

result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

def test_compare_scalar_na(self, op, array, nulls_fixture):
result = op(array, nulls_fixture)
expected = self.elementwise_comparison(op, array, nulls_fixture)
tm.assert_numpy_array_equal(result, expected)

@pytest.mark.parametrize(
"other",
[
0,
1.0,
True,
"foo",
Timestamp("2017-01-01"),
Timestamp("2017-01-01", tz="US/Eastern"),
Timedelta("0 days"),
Period("2017-01-01", "D"),
],
)
def test_compare_scalar_other(self, op, array, other):
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

def test_compare_list_like_interval(
self, op, array, interval_constructor,
):
# same endpoints
other = interval_constructor(array.left, array.right)
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

# different endpoints
other = interval_constructor(array.left[::-1], array.right[::-1])
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

# all nan endpoints
other = interval_constructor([np.nan] * 4, [np.nan] * 4)
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

def test_compare_list_like_interval_mixed_closed(
self, op, interval_constructor, closed, other_closed
):
array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed)
other = interval_constructor(range(2), range(1, 3), closed=other_closed)

result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

@pytest.mark.parametrize(
"other",
[
(
Interval(0, 1),
Interval(Timedelta("1 day"), Timedelta("2 days")),
Interval(4, 5, "both"),
Interval(10, 20, "neither"),
),
(0, 1.5, Timestamp("20170103"), np.nan),
(
Timestamp("20170102", tz="US/Eastern"),
Timedelta("2 days"),
"baz",
pd.NaT,
),
],
)
def test_compare_list_like_object(self, op, array, other):
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

def test_compare_list_like_nan(self, op, array, nulls_fixture):
other = [nulls_fixture] * 4
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

@pytest.mark.parametrize(
"other",
[
np.arange(4, dtype="int64"),
np.arange(4, dtype="float64"),
date_range("2017-01-01", periods=4),
date_range("2017-01-01", periods=4, tz="US/Eastern"),
timedelta_range("0 days", periods=4),
period_range("2017-01-01", periods=4, freq="D"),
Categorical(list("abab")),
Categorical(date_range("2017-01-01", periods=4)),
pd.array(list("abcd")),
pd.array(["foo", 3.14, None, object()]),
],
ids=lambda x: str(x.dtype),
)
def test_compare_list_like_other(self, op, array, other):
result = op(array, other)
expected = self.elementwise_comparison(op, array, other)
tm.assert_numpy_array_equal(result, expected)

@pytest.mark.parametrize("length", [1, 3, 5])
@pytest.mark.parametrize("other_constructor", [IntervalArray, list])
def test_compare_length_mismatch_errors(self, op, other_constructor, length):
array = IntervalArray.from_arrays(range(4), range(1, 5))
other = other_constructor([Interval(0, 1)] * length)
with pytest.raises(ValueError, match="Lengths must match to compare"):
op(array, other)

@pytest.mark.parametrize(
"constructor, expected_type, assert_func",
[
(IntervalIndex, np.array, tm.assert_numpy_array_equal),
(Series, Series, tm.assert_series_equal),
],
)
def test_index_series_compat(self, op, constructor, expected_type, assert_func):
# IntervalIndex/Series that rely on IntervalArray for comparisons
breaks = range(4)
index = constructor(IntervalIndex.from_breaks(breaks))

# scalar comparisons
other = index[0]
result = op(index, other)
expected = expected_type(self.elementwise_comparison(op, index, other))
assert_func(result, expected)

other = breaks[0]
result = op(index, other)
expected = expected_type(self.elementwise_comparison(op, index, other))
assert_func(result, expected)

# list-like comparisons
other = IntervalArray.from_breaks(breaks)
result = op(index, other)
expected = expected_type(self.elementwise_comparison(op, index, other))
assert_func(result, expected)

other = [index[0], breaks[0], "foo"]
result = op(index, other)
expected = expected_type(self.elementwise_comparison(op, index, other))
assert_func(result, expected)
Loading