Skip to content

TST: stricter monotonicity/uniqueness tests (part 2) #23294

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 24, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions pandas/tests/indexes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,8 +353,8 @@ def test_has_duplicates(self, indices):
pytest.skip('Skip check for empty Index and MultiIndex')

idx = self._holder([indices[0]] * 5)
assert not idx.is_unique
assert idx.has_duplicates
assert idx.is_unique is False
assert idx.has_duplicates is True

@pytest.mark.parametrize('keep', ['first', 'last', False])
def test_duplicated(self, indices, keep):
Expand Down Expand Up @@ -414,7 +414,7 @@ def test_get_unique_index(self, indices):

# We test against `idx_unique`, so first we make sure it's unique
# and doesn't contain nans.
assert idx_unique.is_unique
assert idx_unique.is_unique is True
try:
assert not idx_unique.hasnans
except NotImplementedError:
Expand All @@ -438,7 +438,7 @@ def test_get_unique_index(self, indices):
vals_unique = vals[:2]
idx_nan = indices._shallow_copy(vals)
idx_unique_nan = indices._shallow_copy(vals_unique)
assert idx_unique_nan.is_unique
assert idx_unique_nan.is_unique is True

assert idx_nan.dtype == indices.dtype
assert idx_unique_nan.dtype == indices.dtype
Expand Down
92 changes: 46 additions & 46 deletions pandas/tests/indexes/interval/test_interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -243,108 +243,108 @@ def test_unique(self, closed):
# unique non-overlapping
idx = IntervalIndex.from_tuples(
[(0, 1), (2, 3), (4, 5)], closed=closed)
assert idx.is_unique
assert idx.is_unique is True

# unique overlapping - distinct endpoints
idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed)
assert idx.is_unique
assert idx.is_unique is True

# unique overlapping - shared endpoints
idx = pd.IntervalIndex.from_tuples(
[(1, 2), (1, 3), (2, 3)], closed=closed)
assert idx.is_unique
assert idx.is_unique is True

# unique nested
idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed)
assert idx.is_unique
assert idx.is_unique is True

# duplicate
idx = IntervalIndex.from_tuples(
[(0, 1), (0, 1), (2, 3)], closed=closed)
assert not idx.is_unique
assert idx.is_unique is False

# empty
idx = IntervalIndex([], closed=closed)
assert idx.is_unique
assert idx.is_unique is True

def test_monotonic(self, closed):
# increasing non-overlapping
idx = IntervalIndex.from_tuples(
[(0, 1), (2, 3), (4, 5)], closed=closed)
assert idx.is_monotonic
assert idx._is_strictly_monotonic_increasing
assert not idx.is_monotonic_decreasing
assert not idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False

# decreasing non-overlapping
idx = IntervalIndex.from_tuples(
[(4, 5), (2, 3), (1, 2)], closed=closed)
assert not idx.is_monotonic
assert not idx._is_strictly_monotonic_increasing
assert idx.is_monotonic_decreasing
assert idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True

# unordered non-overlapping
idx = IntervalIndex.from_tuples(
[(0, 1), (4, 5), (2, 3)], closed=closed)
assert not idx.is_monotonic
assert not idx._is_strictly_monotonic_increasing
assert not idx.is_monotonic_decreasing
assert not idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False

# increasing overlapping
idx = IntervalIndex.from_tuples(
[(0, 2), (0.5, 2.5), (1, 3)], closed=closed)
assert idx.is_monotonic
assert idx._is_strictly_monotonic_increasing
assert not idx.is_monotonic_decreasing
assert not idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False

# decreasing overlapping
idx = IntervalIndex.from_tuples(
[(1, 3), (0.5, 2.5), (0, 2)], closed=closed)
assert not idx.is_monotonic
assert not idx._is_strictly_monotonic_increasing
assert idx.is_monotonic_decreasing
assert idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True

# unordered overlapping
idx = IntervalIndex.from_tuples(
[(0.5, 2.5), (0, 2), (1, 3)], closed=closed)
assert not idx.is_monotonic
assert not idx._is_strictly_monotonic_increasing
assert not idx.is_monotonic_decreasing
assert not idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False

# increasing overlapping shared endpoints
idx = pd.IntervalIndex.from_tuples(
[(1, 2), (1, 3), (2, 3)], closed=closed)
assert idx.is_monotonic
assert idx._is_strictly_monotonic_increasing
assert not idx.is_monotonic_decreasing
assert not idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is False
assert idx._is_strictly_monotonic_decreasing is False

# decreasing overlapping shared endpoints
idx = pd.IntervalIndex.from_tuples(
[(2, 3), (1, 3), (1, 2)], closed=closed)
assert not idx.is_monotonic
assert not idx._is_strictly_monotonic_increasing
assert idx.is_monotonic_decreasing
assert idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is False
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True

# stationary
idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed)
assert idx.is_monotonic
assert not idx._is_strictly_monotonic_increasing
assert idx.is_monotonic_decreasing
assert not idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is True
assert idx._is_strictly_monotonic_increasing is False
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is False

# empty
idx = IntervalIndex([], closed=closed)
assert idx.is_monotonic
assert idx._is_strictly_monotonic_increasing
assert idx.is_monotonic_decreasing
assert idx._is_strictly_monotonic_decreasing
assert idx.is_monotonic is True
assert idx._is_strictly_monotonic_increasing is True
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is True

@pytest.mark.skip(reason='not a valid repr as we use interval notation')
def test_repr(self):
Expand Down
12 changes: 6 additions & 6 deletions pandas/tests/indexes/multi/test_duplicates.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,16 +131,16 @@ def test_duplicate_meta_data():

def test_has_duplicates(idx, idx_dup):
# see fixtures
assert idx.is_unique
assert not idx.has_duplicates
assert not idx_dup.is_unique
assert idx_dup.has_duplicates
assert idx.is_unique is True
assert idx.has_duplicates is False
assert idx_dup.is_unique is False
assert idx_dup.has_duplicates is True

mi = MultiIndex(levels=[[0, 1], [0, 1, 2]],
labels=[[0, 0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 0, 1, 2]])
assert not mi.is_unique
assert mi.has_duplicates
assert mi.is_unique is False
assert mi.has_duplicates is True


def test_has_duplicates_from_tuples():
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/indexes/multi/test_integrity.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def test_consistency():
index = MultiIndex(levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels])

assert not index.is_unique
assert index.is_unique is False


def test_hash_collisions():
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/indexing/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -676,15 +676,15 @@ def gen_expected(df, mask):
df.take(mask[1:])])

df = gen_test(900, 100)
assert not df.index.is_unique
assert df.index.is_unique is False

mask = np.arange(100)
result = df.loc[mask]
expected = gen_expected(df, mask)
tm.assert_frame_equal(result, expected)

df = gen_test(900000, 100000)
assert not df.index.is_unique
assert df.index.is_unique is False

mask = np.arange(100000)
result = df.loc[mask]
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/series/indexing/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -387,7 +387,7 @@ def test_set_value(test_data):
def test_setslice(test_data):
sl = test_data.ts[5:20]
assert len(sl) == len(sl.index)
assert sl.index.is_unique
assert sl.index.is_unique is True


# FutureWarning from NumPy about [slice(None, 5).
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/series/test_duplicates.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,9 +63,9 @@ def test_unique_data_ownership():
def test_is_unique():
# GH11946
s = Series(np.random.randint(0, 10, size=1000))
assert not s.is_unique
assert s.is_unique is False
s = Series(np.arange(1000))
assert s.is_unique
assert s.is_unique is True


def test_is_unique_class_ne(capsys):
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -1109,7 +1109,7 @@ def test_datetime_likes(self):
def test_unique_index(self):
cases = [Index([1, 2, 3]), pd.RangeIndex(0, 3)]
for case in cases:
assert case.is_unique
assert case.is_unique is True
tm.assert_numpy_array_equal(case.duplicated(),
np.array([False, False, False]))

Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/test_multilevel.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,7 +495,7 @@ def test_xs_partial(self):
def test_xs_with_duplicates(self):
# Issue #13719
df_dup = concat([self.frame] * 2)
assert not df_dup.index.is_unique
assert df_dup.index.is_unique is False
expected = concat([self.frame.xs('one', level='second')] * 2)
tm.assert_frame_equal(df_dup.xs('one', level='second'), expected)
tm.assert_frame_equal(df_dup.xs(['one'], level=['second']), expected)
Expand Down Expand Up @@ -889,7 +889,7 @@ def test_stack(self):
# GH10417
def check(left, right):
tm.assert_series_equal(left, right)
assert not left.index.is_unique
assert left.index.is_unique is False
li, ri = left.index, right.index
tm.assert_index_equal(li, ri)

Expand Down Expand Up @@ -1922,7 +1922,7 @@ def test_drop_level_nonunique_datetime(self):
df['tstamp'] = idxdt
df = df.set_index('tstamp', append=True)
ts = Timestamp('201603231600')
assert not df.index.is_unique
assert df.index.is_unique is False

result = df.drop(ts, level='tstamp')
expected = df.loc[idx != 4]
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/util/test_hashing.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,9 @@ def test_hash_tuples_err(self, val):
def test_multiindex_unique(self):
mi = MultiIndex.from_tuples([(118, 472), (236, 118),
(51, 204), (102, 51)])
assert mi.is_unique
assert mi.is_unique is True
result = hash_pandas_object(mi)
assert result.is_unique
assert result.is_unique is True

def test_multiindex_objects(self):
mi = MultiIndex(levels=[['b', 'd', 'a'], [1, 2, 3]],
Expand Down