Skip to content

TST/CLN: clean up indexes/multi/test_unique_and_duplicates #21900

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jul 16, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 19 additions & 7 deletions pandas/tests/indexes/multi/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,25 @@ def idx():
major_labels = np.array([0, 0, 1, 2, 3, 3])
minor_labels = np.array([0, 1, 0, 1, 0, 1])
index_names = ['first', 'second']
index = MultiIndex(
levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels],
names=index_names,
verify_integrity=False
)
return index
mi = MultiIndex(levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels],
names=index_names, verify_integrity=False)
return mi


@pytest.fixture
def idx_dup():
# compare tests/indexes/multi/conftest.py
major_axis = Index(['foo', 'bar', 'baz', 'qux'])
minor_axis = Index(['one', 'two'])

major_labels = np.array([0, 0, 1, 0, 1, 1])
minor_labels = np.array([0, 1, 0, 1, 0, 1])
index_names = ['first', 'second']
mi = MultiIndex(levels=[major_axis, minor_axis],
labels=[major_labels, minor_labels],
names=index_names, verify_integrity=False)
return mi


@pytest.fixture
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,56 +2,54 @@

import warnings
from itertools import product
import pytest

import numpy as np
import pandas as pd
import pandas.util.testing as tm
import pytest
from pandas import MultiIndex

from pandas.compat import range, u
from pandas import MultiIndex, DatetimeIndex
from pandas._libs import hashtable
import pandas.util.testing as tm


@pytest.mark.parametrize('names', [None, ['first', 'second']])
def test_unique(names):
mi = pd.MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]],
names=names)
mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names)

res = mi.unique()
exp = pd.MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names)
exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names)
tm.assert_index_equal(res, exp)

mi = pd.MultiIndex.from_arrays([list('aaaa'), list('abab')],
names=names)
mi = MultiIndex.from_arrays([list('aaaa'), list('abab')],
names=names)
res = mi.unique()
exp = pd.MultiIndex.from_arrays([list('aa'), list('ab')],
names=mi.names)
exp = MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names)
tm.assert_index_equal(res, exp)

mi = pd.MultiIndex.from_arrays([list('aaaa'), list('aaaa')],
names=names)
mi = MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names)
res = mi.unique()
exp = pd.MultiIndex.from_arrays([['a'], ['a']], names=mi.names)
exp = MultiIndex.from_arrays([['a'], ['a']], names=mi.names)
tm.assert_index_equal(res, exp)

# GH #20568 - empty MI
mi = pd.MultiIndex.from_arrays([[], []], names=names)
mi = MultiIndex.from_arrays([[], []], names=names)
res = mi.unique()
tm.assert_index_equal(mi, res)


def test_unique_datetimelike():
idx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01',
'2015-01-01', 'NaT', 'NaT'])
idx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02',
'2015-01-02', 'NaT', '2015-01-01'],
tz='Asia/Tokyo')
result = pd.MultiIndex.from_arrays([idx1, idx2]).unique()

eidx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT'])
eidx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-02',
'NaT', '2015-01-01'],
tz='Asia/Tokyo')
exp = pd.MultiIndex.from_arrays([eidx1, eidx2])
idx1 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01',
'2015-01-01', 'NaT', 'NaT'])
idx2 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02',
'2015-01-02', 'NaT', '2015-01-01'],
tz='Asia/Tokyo')
result = MultiIndex.from_arrays([idx1, idx2]).unique()

eidx1 = DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT'])
eidx2 = DatetimeIndex(['2015-01-01', '2015-01-02',
'NaT', '2015-01-01'],
tz='Asia/Tokyo')
exp = MultiIndex.from_arrays([eidx1, eidx2])
tm.assert_index_equal(result, exp)


Expand All @@ -63,41 +61,51 @@ def test_unique_level(idx, level):
tm.assert_index_equal(result, expected)

# With already unique level
mi = pd.MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]],
names=['first', 'second'])
mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]],
names=['first', 'second'])
result = mi.unique(level=level)
expected = mi.get_level_values(level)
tm.assert_index_equal(result, expected)

# With empty MI
mi = pd.MultiIndex.from_arrays([[], []], names=['first', 'second'])
mi = MultiIndex.from_arrays([[], []], names=['first', 'second'])
result = mi.unique(level=level)
expected = mi.get_level_values(level)


@pytest.mark.parametrize('dropna', [True, False])
def test_get_unique_index(idx, dropna):
mi = idx[[0, 1, 0, 1, 1, 0, 0]]
expected = mi._shallow_copy(mi[[0, 1]])

result = mi._get_unique_index(dropna=dropna)
assert result.unique
tm.assert_index_equal(result, expected)


def test_duplicate_multiindex_labels():
# GH 17464
# Make sure that a MultiIndex with duplicate levels throws a ValueError
with pytest.raises(ValueError):
ind = pd.MultiIndex([['A'] * 10, range(10)], [[0] * 10, range(10)])
mi = MultiIndex([['A'] * 10, range(10)], [[0] * 10, range(10)])

# And that using set_levels with duplicate levels fails
ind = MultiIndex.from_arrays([['A', 'A', 'B', 'B', 'B'],
[1, 2, 1, 2, 3]])
mi = MultiIndex.from_arrays([['A', 'A', 'B', 'B', 'B'],
[1, 2, 1, 2, 3]])
with pytest.raises(ValueError):
ind.set_levels([['A', 'B', 'A', 'A', 'B'], [2, 1, 3, -2, 5]],
inplace=True)
mi.set_levels([['A', 'B', 'A', 'A', 'B'], [2, 1, 3, -2, 5]],
inplace=True)


@pytest.mark.parametrize('names', [['a', 'b', 'a'], [1, 1, 2],
[1, 'a', 1]])
def test_duplicate_level_names(names):
# GH18872, GH19029
mi = pd.MultiIndex.from_product([[0, 1]] * 3, names=names)
mi = MultiIndex.from_product([[0, 1]] * 3, names=names)
assert mi.names == names

# With .rename()
mi = pd.MultiIndex.from_product([[0, 1]] * 3)
mi = MultiIndex.from_product([[0, 1]] * 3)
mi = mi.rename(names)
assert mi.names == names

Expand All @@ -109,27 +117,34 @@ def test_duplicate_level_names(names):

def test_duplicate_meta_data():
# GH 10115
index = MultiIndex(
mi = MultiIndex(
levels=[[0, 1], [0, 1, 2]],
labels=[[0, 0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 0, 1, 2]])

for idx in [index,
index.set_names([None, None]),
index.set_names([None, 'Num']),
index.set_names(['Upper', 'Num']), ]:
for idx in [mi,
mi.set_names([None, None]),
mi.set_names([None, 'Num']),
mi.set_names(['Upper', 'Num']), ]:
assert idx.has_duplicates
assert idx.drop_duplicates().names == idx.names


def test_duplicates(idx):
def test_has_duplicates(idx, idx_dup):
# see fixtures
assert idx.is_unique
assert not idx.has_duplicates
assert idx.append(idx).has_duplicates
assert not idx_dup.is_unique
assert idx_dup.has_duplicates

index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[
[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]])
assert index.has_duplicates
mi = MultiIndex(levels=[[0, 1], [0, 1, 2]],
labels=[[0, 0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 0, 1, 2]])
assert not mi.is_unique
assert mi.has_duplicates


def test_has_duplicates_from_tuples():
# GH 9075
t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169),
(u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119),
Expand All @@ -150,9 +165,11 @@ def test_duplicates(idx):
(u('x'), u('out'), u('z'), 33, u('y'), u('in'), u('z'), 123),
(u('x'), u('out'), u('z'), 12, u('y'), u('in'), u('z'), 144)]

index = pd.MultiIndex.from_tuples(t)
assert not index.has_duplicates
mi = MultiIndex.from_tuples(t)
assert not mi.has_duplicates


def test_has_duplicates_overflow():
# handle int64 overflow if possible
def check(nlevels, with_nulls):
labels = np.tile(np.arange(500), 2)
Expand All @@ -171,20 +188,20 @@ def check(nlevels, with_nulls):
levels = [level] * nlevels + [[0, 1]]

# no dups
index = MultiIndex(levels=levels, labels=labels)
assert not index.has_duplicates
mi = MultiIndex(levels=levels, labels=labels)
assert not mi.has_duplicates

# with a dup
if with_nulls:
def f(a):
return np.insert(a, 1000, a[0])
labels = list(map(f, labels))
index = MultiIndex(levels=levels, labels=labels)
mi = MultiIndex(levels=levels, labels=labels)
else:
values = index.values.tolist()
index = MultiIndex.from_tuples(values + [values[0]])
values = mi.values.tolist()
mi = MultiIndex.from_tuples(values + [values[0]])

assert index.has_duplicates
assert mi.has_duplicates

# no overflow
check(4, False)
Expand All @@ -194,29 +211,42 @@ def f(a):
check(8, False)
check(8, True)


@pytest.mark.parametrize('keep, expected', [
('first', np.array([False, False, False, True, True, False])),
('last', np.array([False, True, True, False, False, False])),
(False, np.array([False, True, True, True, True, False]))
])
def test_duplicated(idx_dup, keep, expected):
result = idx_dup.duplicated(keep=keep)
tm.assert_numpy_array_equal(result, expected)


@pytest.mark.parametrize('keep', ['first', 'last', False])
def test_duplicated_large(keep):
# GH 9125
n, k = 200, 5000
levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)]
labels = [np.random.choice(n, k * n) for lev in levels]
mi = MultiIndex(levels=levels, labels=labels)

for keep in ['first', 'last', False]:
left = mi.duplicated(keep=keep)
right = pd._libs.hashtable.duplicated_object(mi.values, keep=keep)
tm.assert_numpy_array_equal(left, right)
result = mi.duplicated(keep=keep)
expected = hashtable.duplicated_object(mi.values, keep=keep)
tm.assert_numpy_array_equal(result, expected)


def test_get_duplicates():
# GH5873
for a in [101, 102]:
mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]])
assert not mi.has_duplicates

with warnings.catch_warnings(record=True):
# Deprecated - see GH20239
assert mi.get_duplicates().equals(MultiIndex.from_arrays(
[[], []]))
assert mi.get_duplicates().equals(MultiIndex.from_arrays([[], []]))

tm.assert_numpy_array_equal(mi.duplicated(), np.zeros(
2, dtype='bool'))
tm.assert_numpy_array_equal(mi.duplicated(),
np.zeros(2, dtype='bool'))

for n in range(1, 6): # 1st level shape
for m in range(1, 5): # 2nd level shape
Expand All @@ -232,28 +262,5 @@ def f(a):
assert mi.get_duplicates().equals(MultiIndex.from_arrays(
[[], []]))

tm.assert_numpy_array_equal(mi.duplicated(), np.zeros(
len(mi), dtype='bool'))


def test_get_unique_index(idx):
idx = idx[[0, 1, 0, 1, 1, 0, 0]]
expected = idx._shallow_copy(idx[[0, 1]])

for dropna in [False, True]:
result = idx._get_unique_index(dropna=dropna)
assert result.unique
tm.assert_index_equal(result, expected)


def test_unique_na():
idx = pd.Index([2, np.nan, 2, 1], name='my_index')
expected = pd.Index([2, np.nan, 1], name='my_index')
result = idx.unique()
tm.assert_index_equal(result, expected)


def test_duplicate_level_names_access_raises(idx):
idx.names = ['foo', 'foo']
tm.assert_raises_regex(ValueError, 'name foo occurs multiple times',
idx._get_level_number, 'foo')
tm.assert_numpy_array_equal(mi.duplicated(),
np.zeros(len(mi), dtype='bool'))
7 changes: 7 additions & 0 deletions pandas/tests/indexes/multi/test_names.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,3 +115,10 @@ def test_names(idx, index_names):
ind_names = list(index.names)
level_names = [level.name for level in index.levels]
assert ind_names == level_names


def test_duplicate_level_names_access_raises(idx):
# GH19029
idx.names = ['foo', 'foo']
tm.assert_raises_regex(ValueError, 'name foo occurs multiple times',
idx._get_level_number, 'foo')