Skip to content

CLN/INT: Rename _possibly to _maybe (GH15764) #15771

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 16 additions & 16 deletions pandas/computation/expr.py
Original file line number Diff line number Diff line change
Expand Up @@ -348,7 +348,7 @@ def _rewrite_membership_op(self, node, left, right):
op = self.visit(op_instance)
return op, op_instance, left, right

def _possibly_transform_eq_ne(self, node, left=None, right=None):
def _maybe_transform_eq_ne(self, node, left=None, right=None):
if left is None:
left = self.visit(node.left, side='left')
if right is None:
Expand All @@ -357,7 +357,7 @@ def _possibly_transform_eq_ne(self, node, left=None, right=None):
right)
return op, op_class, left, right

def _possibly_downcast_constants(self, left, right):
def _maybe_downcast_constants(self, left, right):
f32 = np.dtype(np.float32)
if left.isscalar and not right.isscalar and right.return_type == f32:
# right is a float32 array, left is a scalar
Expand All @@ -370,7 +370,7 @@ def _possibly_downcast_constants(self, left, right):

return left, right

def _possibly_eval(self, binop, eval_in_python):
def _maybe_eval(self, binop, eval_in_python):
# eval `in` and `not in` (for now) in "partial" python space
# things that can be evaluated in "eval" space will be turned into
# temporary variables. for example,
Expand All @@ -380,9 +380,9 @@ def _possibly_eval(self, binop, eval_in_python):
return binop.evaluate(self.env, self.engine, self.parser,
self.term_type, eval_in_python)

def _possibly_evaluate_binop(self, op, op_class, lhs, rhs,
eval_in_python=('in', 'not in'),
maybe_eval_in_python=('==', '!=', '<', '>',
def _maybe_evaluate_binop(self, op, op_class, lhs, rhs,
eval_in_python=('in', 'not in'),
maybe_eval_in_python=('==', '!=', '<', '>',
'<=', '>=')):
res = op(lhs, rhs)

Expand All @@ -397,24 +397,24 @@ def _possibly_evaluate_binop(self, op, op_class, lhs, rhs,
getattr(rhs, 'is_datetime', False)):
# all date ops must be done in python bc numexpr doesn't work
# well with NaT
return self._possibly_eval(res, self.binary_ops)
return self._maybe_eval(res, self.binary_ops)

if res.op in eval_in_python:
# "in"/"not in" ops are always evaluated in python
return self._possibly_eval(res, eval_in_python)
return self._maybe_eval(res, eval_in_python)
elif self.engine != 'pytables':
if (getattr(lhs, 'return_type', None) == object or
getattr(rhs, 'return_type', None) == object):
# evaluate "==" and "!=" in python if either of our operands
# has an object return type
return self._possibly_eval(res, eval_in_python +
maybe_eval_in_python)
return self._maybe_eval(res, eval_in_python +
maybe_eval_in_python)
return res

def visit_BinOp(self, node, **kwargs):
op, op_class, left, right = self._possibly_transform_eq_ne(node)
left, right = self._possibly_downcast_constants(left, right)
return self._possibly_evaluate_binop(op, op_class, left, right)
op, op_class, left, right = self._maybe_transform_eq_ne(node)
left, right = self._maybe_downcast_constants(left, right)
return self._maybe_evaluate_binop(op, op_class, left, right)

def visit_Div(self, node, **kwargs):
truediv = self.env.scope['truediv']
Expand Down Expand Up @@ -662,9 +662,9 @@ def visitor(x, y):
lhs = self._try_visit_binop(x)
rhs = self._try_visit_binop(y)

op, op_class, lhs, rhs = self._possibly_transform_eq_ne(node, lhs,
rhs)
return self._possibly_evaluate_binop(op, node.op, lhs, rhs)
op, op_class, lhs, rhs = self._maybe_transform_eq_ne(
node, lhs, rhs)
return self._maybe_evaluate_binop(op, node.op, lhs, rhs)

operands = node.values
return reduce(visitor, operands)
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import numpy as np

from pandas import compat, _np_version_under1p8
from pandas.types.cast import _maybe_promote
from pandas.types.cast import maybe_promote
from pandas.types.generic import ABCSeries, ABCIndex
from pandas.types.common import (is_unsigned_integer_dtype,
is_signed_integer_dtype,
Expand Down Expand Up @@ -1279,7 +1279,7 @@ def take_nd(arr, indexer, axis=0, out=None, fill_value=np.nan, mask_info=None,
else:
# check for promotion based on types only (do this first because
# it's faster than computing a mask)
dtype, fill_value = _maybe_promote(arr.dtype, fill_value)
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
if dtype != arr.dtype and (out is None or out.dtype != dtype):
# check if promotion is actually required based on indexer
if mask_info is not None:
Expand Down Expand Up @@ -1362,7 +1362,7 @@ def take_2d_multi(arr, indexer, out=None, fill_value=np.nan, mask_info=None,
else:
# check for promotion based on types only (do this first because
# it's faster than computing a mask)
dtype, fill_value = _maybe_promote(arr.dtype, fill_value)
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
if dtype != arr.dtype and (out is None or out.dtype != dtype):
# check if promotion is actually required based on indexer
if mask_info is not None:
Expand Down
21 changes: 10 additions & 11 deletions pandas/core/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@

from pandas.types.generic import ABCSeries, ABCIndexClass, ABCCategoricalIndex
from pandas.types.missing import isnull, notnull
from pandas.types.cast import (_possibly_infer_to_datetimelike,
_coerce_indexer_dtype)
from pandas.types.cast import (maybe_infer_to_datetimelike,
coerce_indexer_dtype)
from pandas.types.dtypes import CategoricalDtype
from pandas.types.common import (_ensure_int64,
_ensure_object,
Expand Down Expand Up @@ -237,7 +237,7 @@ def __init__(self, values, categories=None, ordered=False, fastpath=False):

if fastpath:
# fast path
self._codes = _coerce_indexer_dtype(values, categories)
self._codes = coerce_indexer_dtype(values, categories)
self._categories = self._validate_categories(
categories, fastpath=isinstance(categories, ABCIndexClass))
self._ordered = ordered
Expand Down Expand Up @@ -266,8 +266,7 @@ def __init__(self, values, categories=None, ordered=False, fastpath=False):
# correctly no need here this is an issue because _sanitize_array
# also coerces np.nan to a string under certain versions of numpy
# as well
values = _possibly_infer_to_datetimelike(values,
convert_dates=True)
values = maybe_infer_to_datetimelike(values, convert_dates=True)
if not isinstance(values, np.ndarray):
values = _convert_to_list_like(values)
from pandas.core.series import _sanitize_array
Expand Down Expand Up @@ -324,7 +323,7 @@ def __init__(self, values, categories=None, ordered=False, fastpath=False):

self.set_ordered(ordered or False, inplace=True)
self._categories = categories
self._codes = _coerce_indexer_dtype(codes, categories)
self._codes = coerce_indexer_dtype(codes, categories)

@property
def _constructor(self):
Expand Down Expand Up @@ -877,7 +876,7 @@ def add_categories(self, new_categories, inplace=False):
new_categories = list(self._categories) + list(new_categories)
cat = self if inplace else self.copy()
cat._categories = self._validate_categories(new_categories)
cat._codes = _coerce_indexer_dtype(cat._codes, new_categories)
cat._codes = coerce_indexer_dtype(cat._codes, new_categories)
if not inplace:
return cat

Expand Down Expand Up @@ -961,7 +960,7 @@ def remove_unused_categories(self, inplace=False):
idx, inv = idx[1:], inv - 1

cat._categories = cat.categories.take(idx)
cat._codes = _coerce_indexer_dtype(inv, self._categories)
cat._codes = coerce_indexer_dtype(inv, self._categories)

if not inplace:
return cat
Expand Down Expand Up @@ -1065,8 +1064,8 @@ def __setstate__(self, state):
state['_categories'] = self._validate_categories(state.pop(
'_levels'))
if '_codes' not in state and 'labels' in state:
state['_codes'] = _coerce_indexer_dtype(state.pop('labels'),
state['_categories'])
state['_codes'] = coerce_indexer_dtype(
state.pop('labels'), state['_categories'])

# 0.16.0 ordered change
if '_ordered' not in state:
Expand Down Expand Up @@ -2062,7 +2061,7 @@ def _get_codes_for_values(values, categories):
(_, _), cats = _get_data_algo(categories, _hashtables)
t = hash_klass(len(cats))
t.map_locations(cats)
return _coerce_indexer_dtype(t.lookup(vals), cats)
return coerce_indexer_dtype(t.lookup(vals), cats)


def _convert_to_list_like(list_like):
Expand Down
54 changes: 27 additions & 27 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,15 +23,15 @@
import numpy as np
import numpy.ma as ma

from pandas.types.cast import (_maybe_upcast, _infer_dtype_from_scalar,
_possibly_cast_to_datetime,
_possibly_infer_to_datetimelike,
_possibly_convert_platform,
_possibly_downcast_to_dtype,
_invalidate_string_dtypes,
_coerce_to_dtypes,
_maybe_upcast_putmask,
_find_common_type)
from pandas.types.cast import (maybe_upcast, infer_dtype_from_scalar,
maybe_cast_to_datetime,
maybe_infer_to_datetimelike,
maybe_convert_platform,
maybe_downcast_to_dtype,
invalidate_string_dtypes,
coerce_to_dtypes,
maybe_upcast_putmask,
find_common_type)
from pandas.types.common import (is_categorical_dtype,
is_object_dtype,
is_extension_type,
Expand Down Expand Up @@ -275,7 +275,7 @@ def __init__(self, data=None, index=None, columns=None, dtype=None,
else:
mask = ma.getmaskarray(data)
if mask.any():
data, fill_value = _maybe_upcast(data, copy=True)
data, fill_value = maybe_upcast(data, copy=True)
data[mask] = fill_value
else:
data = data.copy()
Expand Down Expand Up @@ -335,7 +335,7 @@ def __init__(self, data=None, index=None, columns=None, dtype=None,
if isinstance(data, compat.string_types) and dtype is None:
dtype = np.object_
if dtype is None:
dtype, data = _infer_dtype_from_scalar(data)
dtype, data = infer_dtype_from_scalar(data)

values = np.empty((len(index), len(columns)), dtype=dtype)
values.fill(data)
Expand Down Expand Up @@ -469,7 +469,7 @@ def _get_axes(N, K, index=index, columns=columns):
# on the entire block; this is to convert if we have datetimelike's
# embedded in an object type
if dtype is None and is_object_dtype(values):
values = _possibly_infer_to_datetimelike(values)
values = maybe_infer_to_datetimelike(values)

return create_block_manager_from_blocks([values], [columns, index])

Expand Down Expand Up @@ -2359,7 +2359,7 @@ def select_dtypes(self, include=None, exclude=None):
include, exclude = map(
lambda x: frozenset(map(_get_dtype_from_object, x)), selection)
for dtypes in (include, exclude):
_invalidate_string_dtypes(dtypes)
invalidate_string_dtypes(dtypes)

# can't both include AND exclude!
if not include.isdisjoint(exclude):
Expand Down Expand Up @@ -2659,7 +2659,7 @@ def reindexer(value):
value = _sanitize_index(value, self.index, copy=False)
if not isinstance(value, (np.ndarray, Index)):
if isinstance(value, list) and len(value) > 0:
value = _possibly_convert_platform(value)
value = maybe_convert_platform(value)
else:
value = com._asarray_tuplesafe(value)
elif value.ndim == 2:
Expand All @@ -2671,13 +2671,13 @@ def reindexer(value):

# possibly infer to datetimelike
if is_object_dtype(value.dtype):
value = _possibly_infer_to_datetimelike(value)
value = maybe_infer_to_datetimelike(value)

else:
# upcast the scalar
dtype, value = _infer_dtype_from_scalar(value)
dtype, value = infer_dtype_from_scalar(value)
value = np.repeat(value, len(self.index)).astype(dtype)
value = _possibly_cast_to_datetime(value, dtype)
value = maybe_cast_to_datetime(value, dtype)

# return internal types directly
if is_extension_type(value):
Expand Down Expand Up @@ -3000,8 +3000,8 @@ def _maybe_casted_values(index, labels=None):
else:
values = values.take(labels)
if mask.any():
values, changed = _maybe_upcast_putmask(values, mask,
np.nan)
values, changed = maybe_upcast_putmask(
values, mask, np.nan)
return values

new_index = _default_index(len(new_obj))
Expand Down Expand Up @@ -3722,7 +3722,7 @@ def combine(self, other, func, fill_value=None, overwrite=True):
# if we have different dtypes, possibily promote
new_dtype = this_dtype
if not is_dtype_equal(this_dtype, other_dtype):
new_dtype = _find_common_type([this_dtype, other_dtype])
new_dtype = find_common_type([this_dtype, other_dtype])
if not is_dtype_equal(this_dtype, new_dtype):
series = series.astype(new_dtype)
if not is_dtype_equal(other_dtype, new_dtype):
Expand All @@ -3743,13 +3743,13 @@ def combine(self, other, func, fill_value=None, overwrite=True):
# try to downcast back to the original dtype
if needs_i8_conversion_i:
# ToDo: This conversion should be handled in
# _possibly_cast_to_datetime but the change affects lot...
# _maybe_cast_to_datetime but the change affects lot...
if is_datetime64tz_dtype(new_dtype):
arr = DatetimeIndex._simple_new(arr, tz=new_dtype.tz)
else:
arr = _possibly_cast_to_datetime(arr, new_dtype)
arr = maybe_cast_to_datetime(arr, new_dtype)
else:
arr = _possibly_downcast_to_dtype(arr, this_dtype)
arr = maybe_downcast_to_dtype(arr, this_dtype)

result[col] = arr

Expand Down Expand Up @@ -5003,7 +5003,7 @@ def f(x):

# try to coerce to the original dtypes item by item if we can
if axis == 0:
result = _coerce_to_dtypes(result, self.dtypes)
result = coerce_to_dtypes(result, self.dtypes)

return Series(result, index=labels)

Expand Down Expand Up @@ -5505,7 +5505,7 @@ def _prep_ndarray(values, copy=True):
return np.empty((0, 0), dtype=object)

def convert(v):
return _possibly_convert_platform(v)
return maybe_convert_platform(v)

# we could have a 1-dim or 2-dim list here
# this is equiv of np.asarray, but does object conversion
Expand Down Expand Up @@ -5601,7 +5601,7 @@ def _masked_rec_array_to_mgr(data, index, columns, dtype, copy):
for fv, arr, col in zip(fill_value, arrays, arr_columns):
mask = ma.getmaskarray(data[col])
if mask.any():
arr, fv = _maybe_upcast(arr, fill_value=fv, copy=True)
arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
arr[mask] = fv
new_arrays.append(arr)

Expand Down Expand Up @@ -5699,7 +5699,7 @@ def _convert_object_array(content, columns, coerce_float=False, dtype=None):
def convert(arr):
if dtype != object and dtype != np.object:
arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
arr = _possibly_cast_to_datetime(arr, dtype)
arr = maybe_cast_to_datetime(arr, dtype)
return arr

arrays = [convert(arr) for arr in content]
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
is_list_like,
is_dict_like,
is_re_compilable)
from pandas.types.cast import _maybe_promote, _maybe_upcast_putmask
from pandas.types.cast import maybe_promote, maybe_upcast_putmask
from pandas.types.missing import isnull, notnull
from pandas.types.generic import ABCSeries, ABCPanel

Expand Down Expand Up @@ -4956,10 +4956,10 @@ def _where(self, cond, other=np.nan, inplace=False, axis=None, level=None,
# or not try_quick
if not try_quick:

dtype, fill_value = _maybe_promote(other.dtype)
dtype, fill_value = maybe_promote(other.dtype)
new_other = np.empty(len(icond), dtype=dtype)
new_other.fill(fill_value)
_maybe_upcast_putmask(new_other, icond, other)
maybe_upcast_putmask(new_other, icond, other)
other = new_other

else:
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
_ensure_object,
_ensure_categorical,
_ensure_float)
from pandas.types.cast import _possibly_downcast_to_dtype
from pandas.types.cast import maybe_downcast_to_dtype
from pandas.types.missing import isnull, notnull, _maybe_fill

from pandas.core.common import (_values_from_object, AbstractMethodError,
Expand Down Expand Up @@ -783,7 +783,7 @@ def _try_cast(self, result, obj, numeric_only=False):

if not is_scalar(result):
if numeric_only and is_numeric_dtype(dtype) or not numeric_only:
result = _possibly_downcast_to_dtype(result, dtype)
result = maybe_downcast_to_dtype(result, dtype)

return result

Expand Down Expand Up @@ -2914,7 +2914,7 @@ def transform(self, func, *args, **kwargs):
# the cython take a different path (and casting)
dtype = self._selected_obj.dtype
if is_numeric_dtype(dtype):
result = _possibly_downcast_to_dtype(result, dtype)
result = maybe_downcast_to_dtype(result, dtype)

result.name = self._selected_obj.name
result.index = self._selected_obj.index
Expand Down
Loading