Skip to content

interpreting index name in min_itemsize specification #11364, #10381 #11368

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 24 additions & 13 deletions pandas/io/pytables.py
Original file line number Diff line number Diff line change
Expand Up @@ -2989,7 +2989,6 @@ def data_orientation(self):

def queryables(self):
""" return a dict of the kinds allowable columns for this object """

# compute the values_axes queryables
return dict(
[(a.cname, a) for a in self.index_axes] +
Expand Down Expand Up @@ -3090,6 +3089,13 @@ def validate_min_itemsize(self, min_itemsize):
return

q = self.queryables()

if ('index' in min_itemsize) and ('index' not in q): # issue #11364
for axname in self.index_axes:
#print("axname:" , axname.name)
min_itemsize[ axname.name ] = min_itemsize['index']
del min_itemsize['index']

for k, v in min_itemsize.items():

# ok, apply generally
Expand All @@ -3099,6 +3105,7 @@ def validate_min_itemsize(self, min_itemsize):
raise ValueError(
"min_itemsize has the key [%s] which is not an axis or "
"data_column" % k)
return min_itemsize

@property
def indexables(self):
Expand Down Expand Up @@ -3288,7 +3295,7 @@ def create_axes(self, axes, obj, validate=True, nan_rep=None,

# map axes to numbers
axes = [obj._get_axis_number(a) for a in axes]

# do we have an existing table (if so, use its axes & data_columns)
if self.infer_axes():
existing_table = self.copy()
Expand Down Expand Up @@ -3318,15 +3325,17 @@ def create_axes(self, axes, obj, validate=True, nan_rep=None,

# create axes to index and non_index
index_axes_map = dict()

for i, a in enumerate(obj.axes):

if i in axes:
name = obj._AXIS_NAMES[i]
name = getattr(obj, obj._AXIS_NAMES[i]).name # obj._AXIS_NAMES[i]
if name is None:
name = obj._AXIS_NAMES[i]
index_axes_map[i] = _convert_index(
a, self.encoding, self.format_type
).set_name(name).set_axis(i)
else:

# we might be able to change the axes on the appending data if
# necessary
append_axis = list(a)
Expand All @@ -3346,18 +3355,14 @@ def create_axes(self, axes, obj, validate=True, nan_rep=None,

self.non_index_axes.append((i, append_axis))


# set axis positions (based on the axes)
self.index_axes = [
index_axes_map[a].set_pos(j).update_info(self.info)
for j, a in enumerate(axes)
]
j = len(self.index_axes)

# check for column conflicts
if validate:
for a in self.axes:
a.maybe_set_size(min_itemsize=min_itemsize)

# reindex by our non_index_axes & compute data_columns
for a in self.non_index_axes:
obj = _reindex_axis(obj, a[0], a[1])
Expand Down Expand Up @@ -3455,17 +3460,23 @@ def get_blk_items(mgr, blocks):
% (b.dtype.name, b_items, str(detail))
)
j += 1

# validate our min_itemsize
self.validate_min_itemsize(min_itemsize)


# validate our metadata
self.validate_metadata(existing_table)

# validate the axes if we have an existing table
if validate:
self.validate(existing_table)

# validate and correct our min_itemsize # issue #11364
min_itemsize = self.validate_min_itemsize(min_itemsize)

# check for column conflicts
if validate:
for a in self.axes:
a.maybe_set_size(min_itemsize=min_itemsize)


def process_axes(self, obj, columns=None):
""" process axes filters """

Expand Down
37 changes: 37 additions & 0 deletions scripts/test_hdf5_index_11364.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
import pandas as pd
import os

def create_test_file():
col_nums = [0]
df = pd.DataFrame({"V1":["a","b","c","d","e", "aaaah!!!"],
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you need to craft a test along the lines of the tests in pandas/io/tests/test_pytables.py

"W":["c","d","c","d","c","c"],
"ZZZ":np.arange(6)})
df.set_index(["V1","W"], inplace = True)
df.to_csv("testtable.tab",sep = "\t")


def test_write_hdf5_11364():
sep = "\t"
indexcols =[0]
chunksize=5

xbed = "testtable.tab"
os.remove(xbed)
# create a store
with pd.HDFStore('tempstore.h5') as store:
for nn, chunk in enumerate(pd.read_table(xbed, chunksize=chunksize, sep = sep, index_col= indexcols)):
group = "x"
#print(chunk.index.names)
store.append(group, chunk, format = "table", min_itemsize = \
{"index":32} if len(indexcols)==1 else \
dict(zip(chunk.index.names, [32]*len(chunk.index.names))))
print("chunk #" , nn, file = sys.stderr)

os.remove(xbed)
assert True

def test_read_hdf5_11364():
with pd.HDFStore('tempstore.h5') as store:
df = store.get(group)
print(df.shape)
assert (df.shape==(6,3 - len(indexcols))), "wrong shape"