-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
TST: Xfails in Python 3.10 CI #41940
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
@lithomas1 when we added support for 3.9, we did it in a patch release. So if we need to make changes, we'll probably backport them, so we probably want ci changes on 1.3.x also. |
@simonjayhawkins Sure, moved right now. I'm just milestoning so we don't forget. |
@lithomas1 are you able to reproduce the numpy failures locally xref #41935? |
@lithomas1 can you update this after merging the patch. |
I cannot test it easily, but my guess is that #41988 had fixed the following examples: TestUnique.test_first_nan_kept, TestIsin.test_different_nans, TestIsin.test_different_nan_objects, TestDataFrameSelectReindex.test_reindex_nan, TestIndex.test_isin_nan_common_object, TestGetDummies.test_get_dummies_basic_drop_first_NA, test_map_missing_mixed, test_reindex_nan
|
@lithomas1 what's the status here? Is is maybe worth opening separate issues for the ones that can be fixed now. |
just the json tests left i think. |
Moved to 1.3.4. Have currently scheduled 1.3.4 for October 17, 2021 but could release earlier if there are issues with the pandas 1.3.3 py3.10 wheels once Python 3.10.0 final is released. |
test_tz_is_utc and test_tz_range_is_utc in pandas/tests/io/json/test_pandas.py is covered by #42130 test_read_csv_and_table_sys_setprofile in pandas/tests/io/parser/common/test_common_basic.py is covered by #41935 so that just leaves test_invalid_double_precision in pandas/tests/io/json/test_ujson.py which is linked back to this issue. changing milestone to 1.3.5 (or could close and open a specific issue for test_invalid_double_precision in pandas/tests/io/json/test_ujson.py or combine with #42130 @lithomas1) |
removing from 1.3.5 milestone but will leave this issue open while this xfail is still in play on this test. |
A list of failures for pandas on Python 3.10.
Note: Some of these are flaky.
TestUnique.test_first_nan_kept
self = <pandas.tests.test_algos.TestUnique object at 0x7fe611cc19c0>
E assert 2 == 1
E + where 2 = array([nan, nan], dtype=object).size
pandas/tests/test_algos.py:798: AssertionError
TestIsin.test_different_nans
self = <pandas.tests.test_algos.TestIsin object at 0x7fe611cc2b30>
pandas/tests/test_algos.py:1007:
left = array([ True]), right = array([False]), err_msg = None
E AssertionError: numpy array are different
E
E numpy array values are different (100.0 %)
E [left]: [True]
E [right]: [False]
pandas/_testing/asserters.py:726: AssertionError
TestIsin.test_different_nan_objects
self = <pandas.tests.test_algos.TestIsin object at 0x7fe61167ff40>
pandas/tests/test_algos.py:1039:
left = array([False, False, True]), right = array([False, False, False])
err_msg = None
E AssertionError: numpy array are different
E
E numpy array values are different (33.33333 %)
E [left]: [False, False, True]
E [right]: [False, False, False]
pandas/_testing/asserters.py:726: AssertionError
test_hash_equal
a = Sparse[float64, nan], b = Sparse[float64, nan], expected = True
E assert False is True
pandas/tests/arrays/sparse/test_dtype.py:141: AssertionError
TestReshaping.test_stack
self = <pandas.tests.extension.test_sparse.TestReshaping object at 0x7fe5fc4a6d10>
data = [0.6069529775354311, 0.6532416455715819, nan, 0.45409596635270144, 0.10948849972327801, nan, 0.08987488776518548, 0.19...66, 67, 69, 70, 72, 73, 75,
76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99],
dtype=int32)
columns = ['A', 'B']
pandas/tests/extension/base/reshaping.py:270:
cls = <class 'pandas.tests.extension.test_sparse.TestReshaping'>
left = 0 A 0.606953
B 0.606953
1 A 0.653242
B 0.653242
3 A 0.454096
B 0.454096
4 A 0.109488
B 0.109488
dtype: Sparse[object, nan]
right = 0 A 0.606953
B 0.606953
1 A 0.653242
B 0.653242
3 A 0.454096
B 0.454096
4 A 0.109488
B 0.109488
dtype: object
kwargs = {}
E AssertionError: Attributes of Series are different
E
E Attribute "dtype" are different
E [left]: Sparse[object, nan]
E [right]: object
pandas/tests/extension/base/base.py:9: AssertionError
____________________ TestReshaping.test_stack[nan-columns1] ____________________
self = <pandas.tests.extension.test_sparse.TestReshaping object at 0x7fe5fbea8a30>
data = [0.08642533151098042, 0.31948867044255314, nan, 0.7649119528014422, 0.8562776453950798, nan, 0.0026917407695283835, 0....66, 67, 69, 70, 72, 73, 75,
76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99],
dtype=int32)
columns = MultiIndex([('A', 'a'),
('A', 'b')],
names=['outer', 'inner'])
pandas/tests/extension/base/reshaping.py:270:
cls = <class 'pandas.tests.extension.test_sparse.TestReshaping'>
left = outer A
inner
0 a 0.086425
b 0.086425
1 a 0.319489
b 0.319489
3 a 0.764912
b 0.764912
4 a 0.856278
b 0.856278
right = outer A
inner
0 a 0.086425
b 0.086425
1 a 0.319489
b 0.319489
3 a 0.764912
b 0.764912
4 a 0.856278
b 0.856278
kwargs = {}
E AssertionError: Attributes of DataFrame.iloc[:, 0] (column name="A") are different
E
E Attribute "dtype" are different
E [left]: Sparse[object, nan]
E [right]: object
pandas/tests/extension/base/base.py:9: AssertionError
TestDataFrameSelectReindex.test_reindex_nan
self = <pandas.tests.frame.methods.test_reindex.TestDataFrameSelectReindex object at 0x7fe5f9d03f40>
E AssertionError: Attributes of DataFrame.iloc[:, 0] (column name="joe") are different
E
E Attribute "dtype" are different
E [left]: float64
E [right]: int64
pandas/tests/frame/methods/test_reindex.py:472: AssertionError
TestIndex.test_isin_nan_common_object
self = <pandas.tests.indexes.test_base.TestIndex object at 0x7fe5f6a4d930>
nulls_fixture = nan, nulls_fixture2 = nan
pandas/tests/indexes/test_base.py:1006:
left = array([False, False]), right = array([False, True]), err_msg = None
E AssertionError: numpy array are different
E
E numpy array values are different (50.0 %)
E [left]: [False, False]
E [right]: [False, True]
pandas/_testing/asserters.py:726: AssertionError
_____________ TestIndex.test_isin_nan_common_object[float1-float0] _____________
self = <pandas.tests.indexes.test_base.TestIndex object at 0x7fe5f5e186a0>
nulls_fixture = nan, nulls_fixture2 = nan
pandas/tests/indexes/test_base.py:1006:
left = array([False, False]), right = array([False, True]), err_msg = None
E AssertionError: numpy array are different
E
E numpy array values are different (50.0 %)
E [left]: [False, False]
E [right]: [False, True]
pandas/_testing/asserters.py:726: AssertionError
_____________ TestIndex.test_isin_nan_common_object[float1-float1] _____________
self = <pandas.tests.indexes.test_base.TestIndex object at 0x7fe5f6ab3eb0>
nulls_fixture = nan, nulls_fixture2 = nan
pandas/tests/indexes/test_base.py:1006:
left = array([False, False]), right = array([False, True]), err_msg = None
E AssertionError: numpy array are different
E
E numpy array values are different (50.0 %)
E [left]: [False, False]
E [right]: [False, True]
pandas/_testing/asserters.py:726: AssertionError
TestUltraJSONTests.test_invalid_double_precision
self = <pandas.tests.io.json.test_ujson.TestUltraJSONTests object at 0x7fe5ee07d780>
invalid_val = '9'
E TypeError: 'str' object cannot be interpreted as an integer
pandas/tests/io/json/test_ujson.py:260: TypeError
During handling of the above exception, another exception occurred:
self = <pandas.tests.io.json.test_ujson.TestUltraJSONTests object at 0x7fe5ee07d780>
invalid_val = '9'
E AssertionError: Regex pattern "Invalid value '.*' for option 'double_precision', max is '15'|an integer is required \(got type " does not match "'str' object cannot be interpreted as an integer".
pandas/tests/io/json/test_ujson.py:259: AssertionError
____________ TestUltraJSONTests.test_invalid_double_precision[None] ____________
self = <pandas.tests.io.json.test_ujson.TestUltraJSONTests object at 0x7fe5ee07d990>
invalid_val = None
E TypeError: 'NoneType' object cannot be interpreted as an integer
pandas/tests/io/json/test_ujson.py:260: TypeError
During handling of the above exception, another exception occurred:
self = <pandas.tests.io.json.test_ujson.TestUltraJSONTests object at 0x7fe5ee07d990>
invalid_val = None
E AssertionError: Regex pattern "Invalid value '.*' for option 'double_precision', max is '15'|an integer is required \(got type " does not match "'NoneType' object cannot be interpreted as an integer".
pandas/tests/io/json/test_ujson.py:259: AssertionError
TestGetDummies.test_get_dummies_basic_drop_first_NA
self = <pandas.tests.reshape.test_get_dummies.TestGetDummies object at 0x7fe5e7b1d7b0>
sparse = False
E AssertionError
pandas/tests/reshape/test_get_dummies.py:485: AssertionError
test_reindex_nan
E AssertionError: Attributes of Series are different
E
E Attribute "dtype" are different
E [left]: float64
E [right]: int64
test_map_missing_mixed
vals = ['a', 'b', 'c'], mapping = {nan: 'not NaN'}
exp = [nan, nan, nan, 'not NaN']
pandas/tests/apply/test_series_apply.py:821:
pandas/_libs/testing.pyx:53: in pandas._libs.testing.assert_almost_equal
cpdef assert_almost_equal(a, b,
pandas/_libs/testing.pyx:168: AssertionError
NOTE: This list is not complete since there are also some failing JSON tests that freeze pytest. Will look at those soon.
The text was updated successfully, but these errors were encountered: