Skip to content

Extends DataFrame.groupby overloads to recognize some scalar index types #679

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 6, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 20 additions & 2 deletions pandas-stubs/core/frame.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -27,11 +27,15 @@ from pandas.core.arraylike import OpsMixin
from pandas.core.generic import NDFrame
from pandas.core.groupby.generic import (
_DataFrameGroupByNonScalar,
_DataFrameGroupByPeriod,
_DataFrameGroupByScalar,
)
from pandas.core.groupby.grouper import Grouper
from pandas.core.indexers import BaseIndexer
from pandas.core.indexes.base import Index
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.period import PeriodIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.core.indexing import (
_iLocIndexer,
_IndexSliceTuple,
Expand All @@ -52,6 +56,7 @@ import xarray as xr

from pandas._libs.missing import NAType
from pandas._libs.tslibs import BaseOffset
from pandas._libs.tslibs.period import Period
from pandas._typing import (
S1,
AggFuncTypeBase,
Expand Down Expand Up @@ -1000,9 +1005,9 @@ class DataFrame(NDFrame, OpsMixin):
errors: IgnoreRaise = ...,
) -> None: ...
@overload
def groupby(
def groupby( # type: ignore[misc]
self,
by: Scalar,
by: Scalar | DatetimeIndex | TimedeltaIndex,
axis: Axis = ...,
level: Level | None = ...,
as_index: _bool = ...,
Expand All @@ -1013,6 +1018,19 @@ class DataFrame(NDFrame, OpsMixin):
dropna: _bool = ...,
) -> _DataFrameGroupByScalar: ...
@overload
def groupby( # type: ignore[misc] # pyright: ignore[reportOverlappingOverload]
self,
by: PeriodIndex,
axis: Axis = ...,
level: Level | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
dropna: _bool = ...,
) -> _DataFrameGroupByPeriod: ...
@overload
def groupby(
self,
by: GroupByObjectNonScalar | None = ...,
Expand Down
4 changes: 4 additions & 0 deletions pandas-stubs/core/groupby/generic.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ from pandas.core.groupby.grouper import Grouper
from pandas.core.series import Series
from typing_extensions import TypeAlias

from pandas._libs.tslibs.period import Period
from pandas._typing import (
S1,
AggFuncTypeBase,
Expand Down Expand Up @@ -149,6 +150,9 @@ class SeriesGroupBy(GroupBy, Generic[S1]):
class _DataFrameGroupByScalar(DataFrameGroupBy):
def __iter__(self) -> Iterator[tuple[Scalar, DataFrame]]: ...

class _DataFrameGroupByPeriod(DataFrameGroupBy):
def __iter__(self) -> Iterator[tuple[Period, DataFrame]]: ...

class _DataFrameGroupByNonScalar(DataFrameGroupBy):
def __iter__(self) -> Iterator[tuple[tuple, DataFrame]]: ...

Expand Down
40 changes: 40 additions & 0 deletions tests/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1980,6 +1980,46 @@ def test_groupby_result() -> None:
pass


def test_groupby_result_for_scalar_indeces() -> None:
# GH 674
df = pd.DataFrame({"date": pd.date_range("2020-01-01", "2020-12-31"), "days": 1})
period_index = pd.PeriodIndex(df.date, freq="M")
iterator = df.groupby(period_index).__iter__()
assert_type(iterator, Iterator[Tuple[pd.Period, pd.DataFrame]])
index, value = next(iterator)
assert_type((index, value), Tuple[pd.Period, pd.DataFrame])

check(assert_type(index, pd.Period), pd.Period)
check(assert_type(value, pd.DataFrame), pd.DataFrame)

dt_index = pd.DatetimeIndex(df.date)
iterator2 = df.groupby(dt_index).__iter__()
assert_type(iterator2, Iterator[Tuple[Scalar, pd.DataFrame]])
index2, value2 = next(iterator2)
assert_type((index2, value2), Tuple[Scalar, pd.DataFrame])

check(assert_type(index2, Scalar), pd.Timestamp)
check(assert_type(value2, pd.DataFrame), pd.DataFrame)

tdelta_index = pd.TimedeltaIndex(df.date - pd.Timestamp("2020-01-01"))
iterator3 = df.groupby(tdelta_index).__iter__()
assert_type(iterator3, Iterator[Tuple[Scalar, pd.DataFrame]])
index3, value3 = next(iterator3)
assert_type((index3, value3), Tuple[Scalar, pd.DataFrame])

check(assert_type(index3, Scalar), pd.Timedelta)
check(assert_type(value3, pd.DataFrame), pd.DataFrame)

for p, g in df.groupby(period_index):
pass

for dt, g in df.groupby(dt_index):
pass

for tdelta, g in df.groupby(tdelta_index):
pass


def test_setitem_list():
# GH 153
lst1: list[str] = ["a", "b", "c"]
Expand Down