Skip to content

Delphi_utils geomapper: update to fips 2020 population estimates #1325

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Oct 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
888 changes: 0 additions & 888 deletions _delphi_utils_python/data_proc/geomap/consistency_checks.ipynb

This file was deleted.

31 changes: 14 additions & 17 deletions _delphi_utils_python/data_proc/geomap/geo_data_proc.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
FIPS_MSA_URL = "https://www2.census.gov/programs-surveys/metro-micro/geographies/reference-files/2018/delineation-files/list1_Sep_2018.xls"
JHU_FIPS_URL = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/UID_ISO_FIPS_LookUp_Table.csv"
STATE_CODES_URL = "http://www2.census.gov/geo/docs/reference/state.txt?#"
FIPS_POPULATION_URL = "https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/totals/co-est2019-alldata.csv"
FIPS_POPULATION_URL = "https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/counties/totals/co-est2020-alldata.csv"
FIPS_PUERTO_RICO_POPULATION_URL = (
"https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_county_rel_10.txt?"
)
Expand Down Expand Up @@ -358,34 +358,31 @@ def create_fips_population_table():
census_pop["fips"] = census_pop.apply(
lambda x: f"{x['STATE']:02d}{x['COUNTY']:03d}", axis=1
)
census_pop["pop"] = census_pop["POPESTIMATE2019"]
census_pop["pop"] = census_pop["POPESTIMATE2020"]
census_pop = census_pop[["fips", "pop"]]

# Set population for Dukes and Nantucket combo county
dukes_pop = int(census_pop.loc[census_pop["fips"] == "25007", "pop"])
nantu_pop = int(census_pop.loc[census_pop["fips"] == "25019", "pop"])
census_pop = pd.concat(
[
census_pop,
pd.DataFrame(
{
"fips": ["70002", "70003"],
"pop": [0, 0],
"fips": [
"70002", # Dukes and Nantucket combo county
"70003" # Kansas City
],
"pop": [
dukes_pop + nantu_pop,
491918 # via Google
],
}
),
]
)
census_pop = census_pop.reset_index(drop=True)

# Set population for Dukes and Nantucket
dn_fips = "70002"
dukes_fips = "25007"
nantu_fips = "25019"

census_pop.loc[census_pop["fips"] == dn_fips, "pop"] = (
census_pop.loc[census_pop["fips"] == dukes_fips, "pop"].values
+ census_pop.loc[census_pop["fips"] == nantu_fips, "pop"].values
)

# Set population for Kansas City
census_pop.loc[census_pop["fips"] == "70003", "pop"] = 491918 # via Google

# Get the file with Puerto Rico populations
df_pr = pd.read_csv(FIPS_PUERTO_RICO_POPULATION_URL)
df_pr["fips"] = df_pr["STATE"].astype(str).str.zfill(2) + df_pr["COUNTY"].astype(
Expand Down

Large diffs are not rendered by default.

89 changes: 45 additions & 44 deletions _delphi_utils_python/delphi_utils/data/fips_hhs_table.csv
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,8 @@ fips,hhs
02020,10
02050,10
02060,10
02063,10
02066,10
02068,10
02070,10
02090,10
Expand All @@ -91,7 +93,6 @@ fips,hhs
02220,10
02230,10
02240,10
02261,10
02275,10
02282,10
02290,10
Expand Down Expand Up @@ -3234,60 +3235,60 @@ fips,hhs
69100,9
69110,9
69120,9
78000,2
33000,1
27000,5
40000,6
70000,9
31000,7
09000,1
48000,6
32000,9
04000,9
30000,8
15000,9
69000,9
50000,1
25000,1
19000,7
01000,4
51000,3
41000,10
66000,9
22000,6
06000,9
39000,5
38000,8
53000,10
12000,4
46000,8
17000,5
48000,6
34000,2
08000,8
36000,2
40000,6
47000,4
28000,4
02000,10
49000,8
54000,3
20000,7
08000,8
34000,2
35000,6
45000,4
29000,7
66000,9
05000,6
41000,10
37000,4
55000,5
11000,3
02000,10
72000,2
23000,1
16000,10
44000,1
54000,3
10000,3
21000,4
28000,4
18000,5
05000,6
56000,8
36000,2
19000,7
24000,3
50000,1
37000,4
20000,7
31000,7
29000,7
27000,5
46000,8
38000,8
72000,2
23000,1
78000,2
16000,10
47000,4
22000,6
13000,4
30000,8
39000,5
18000,5
11000,3
15000,9
42000,3
35000,6
60000,9
01000,4
12000,4
10000,3
04000,9
69000,9
06000,9
33000,1
26000,5
70000,9
21000,4
60000,9
51000,3
Loading