Skip to content

change: merge method inputs with class inputs #5183

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 21 additions & 9 deletions src/sagemaker/modules/train/model_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,7 +580,7 @@ def train(
"""Train a model using AWS SageMaker.

Args:
input_data_config (Optional[Union[List[Channel], Dict[str, DataSourceType]]]):
input_data_config (Optional[List[Union[Channel, InputData]]]):
The input data config for the training job.
Takes a list of Channel objects or a dictionary of channel names to DataSourceType.
DataSourceType can be an S3 URI string, local file path string,
Expand All @@ -596,11 +596,23 @@ def train(
current_training_job_name = _get_unique_name(self.base_job_name)
input_data_key_prefix = f"{self.base_job_name}/{current_training_job_name}/input"

self.input_data_config = input_data_config or self.input_data_config or []
final_input_data_config = self.input_data_config.copy() if self.input_data_config else []

if input_data_config:
# merge the inputs with method parameter taking precedence
existing_channels = {input.channel_name: input for input in final_input_data_config}
new_channels = []
for new_input in input_data_config:
if new_input.channel_name in existing_channels:
existing_channels[new_input.channel_name] = new_input
else:
new_channels.append(new_input)

final_input_data_config = list(existing_channels.values()) + new_channels

if self.input_data_config:
self.input_data_config = self._get_input_data_config(
self.input_data_config, input_data_key_prefix
if final_input_data_config:
final_input_data_config = self._get_input_data_config(
final_input_data_config, input_data_key_prefix
)

if self.checkpoint_config and not self.checkpoint_config.s3_uri:
Expand Down Expand Up @@ -643,7 +655,7 @@ def train(
data_source=self.source_code.source_dir,
key_prefix=input_data_key_prefix,
)
self.input_data_config.append(source_code_channel)
final_input_data_config.append(source_code_channel)

self._prepare_train_script(
tmp_dir=tmp_dir,
Expand All @@ -664,7 +676,7 @@ def train(
data_source=tmp_dir.name,
key_prefix=input_data_key_prefix,
)
self.input_data_config.append(sm_drivers_channel)
final_input_data_config.append(sm_drivers_channel)

# If source_code is provided, we will always use
# the default container entrypoint and arguments
Expand All @@ -691,7 +703,7 @@ def train(
training_job_name=current_training_job_name,
algorithm_specification=algorithm_specification,
hyper_parameters=string_hyper_parameters,
input_data_config=self.input_data_config,
input_data_config=final_input_data_config,
resource_config=resource_config,
vpc_config=vpc_config,
# Public Instance Attributes
Expand Down Expand Up @@ -736,7 +748,7 @@ def train(
sagemaker_session=self.sagemaker_session,
container_entrypoint=algorithm_specification.container_entrypoint,
container_arguments=algorithm_specification.container_arguments,
input_data_config=self.input_data_config,
input_data_config=final_input_data_config,
hyper_parameters=string_hyper_parameters,
environment=self.environment,
)
Expand Down
41 changes: 41 additions & 0 deletions tests/unit/sagemaker/modules/train/test_model_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1258,3 +1258,44 @@ def mock_upload_data(path, bucket, key_prefix):

assert kwargs["tensor_board_output_config"].s3_output_path == default_base_path
assert kwargs["tensor_board_output_config"].local_path == "/opt/ml/output/tensorboard"


@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_input_merge(mock_training_job, modules_session):
model_input = InputData(channel_name="model", data_source="s3://bucket/model/model.tar.gz")
model_trainer = ModelTrainer(
training_image=DEFAULT_IMAGE,
role=DEFAULT_ROLE,
sagemaker_session=modules_session,
compute=DEFAULT_COMPUTE_CONFIG,
input_data_config=[model_input],
)

train_input = InputData(channel_name="train", data_source="s3://bucket/data/train")
model_trainer.train(input_data_config=[train_input])

mock_training_job.create.assert_called_once()
assert mock_training_job.create.call_args.kwargs["input_data_config"] == [
Channel(
channel_name="model",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri="s3://bucket/model/model.tar.gz",
s3_data_distribution_type="FullyReplicated",
)
),
input_mode="File",
),
Channel(
channel_name="train",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri="s3://bucket/data/train",
s3_data_distribution_type="FullyReplicated",
)
),
input_mode="File",
),
]