Skip to content

breaking: merge v2 changes into master #1802

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 156 commits into from
Aug 4, 2020
Merged
Show file tree
Hide file tree
Changes from 155 commits
Commits
Show all changes
156 commits
Select commit Hold shift + click to select a range
f7f0ac6
change: create ASTTransformer class to handle migrating Python SDK co…
laurenyu May 14, 2020
81ad62b
change: add class to read Python scripts and update code for v2 (#1497)
laurenyu May 15, 2020
d197b74
infra: add tools/ dir to pylint check (#1499)
laurenyu May 15, 2020
88518e0
change: add CLI wrapper for v2 migration script (#1500)
laurenyu May 18, 2020
57b2a22
change: add .ipynb file support for v2 migration script (#1508)
laurenyu May 19, 2020
40f1d75
breaking: remove estimator parameters for TF legacy mode (#1510)
laurenyu May 27, 2020
5b078f7
change: add v2 migration script to console_scripts in setup.py (#1530)
laurenyu May 28, 2020
c65c80f
breaking: remove legacy TensorFlowModel and TensorFlowPredictor class…
laurenyu May 29, 2020
a680be1
change: convert TF legacy mode parameters to hyperparameters in v2 mi…
laurenyu May 29, 2020
614fe7e
infra: add unit tests for v2 migration script file updaters and modif…
laurenyu Jun 1, 2020
6eeca73
change: remove scipy from dependencies (#1518)
chuyang-deng Jun 1, 2020
0c5392f
change: make v2 migration script remove legacy run_tensorboard_locall…
laurenyu Jun 2, 2020
d0eb4a2
breaking: force image_uri to be passed for legacy TF images (#1539)
laurenyu Jun 2, 2020
778a4ee
breaking: rename sagemaker.tensorflow.serving to sagemaker.tensorflo…
laurenyu Jun 3, 2020
242f81b
change: make v2 migration script remove script_mode param and set mod…
laurenyu Jun 3, 2020
0f5c9b5
Merge branch 'master' into zwei
laurenyu Jun 3, 2020
3014421
infra: remove TF from optional dependencies (#1548)
laurenyu Jun 4, 2020
2099a8d
fix: look for 'sagemaker.tensorflow.estimator' module in v2 migration…
laurenyu Jun 5, 2020
baf1c35
fix: look for 'sagemaker.<framework>.<estimator/model>' module in v2 …
laurenyu Jun 5, 2020
de54a76
change: update v2 migration tool to rename TFS classes/imports (#1552)
laurenyu Jun 8, 2020
97cd594
doc: update TF documentation to reflect breaking changes and how to u…
laurenyu Jun 8, 2020
800f960
doc: change "v2" to "version 2.0 or later" (#1557)
laurenyu Jun 9, 2020
18e402c
doc: start v2 usage and migration documentation (#1553)
laurenyu Jun 9, 2020
7a7c658
doc: remove documentation about old MXNet training script format (#1560)
laurenyu Jun 10, 2020
09336f7
breaking: require framework_version, py_version for mxnet (#1559)
metrizable Jun 10, 2020
5233dfc
change: require framework_version, py_version for xgboost (#1570)
metrizable Jun 11, 2020
9977206
breaking: require framework_version, py_version for sklearn (#1576)
metrizable Jun 11, 2020
7919331
breaking: require framework_version, py_version for pytorch (#1568)
metrizable Jun 11, 2020
9df3f5a
breaking: change Model parameter order to make model_data optional (#…
laurenyu Jun 11, 2020
dbdaf50
breaking: require framework_version, py_version for tensorflow (#1580)
metrizable Jun 12, 2020
66178b4
breaking: require framework_version, py_version for chainer (#1588)
metrizable Jun 15, 2020
a83bed5
breaking: deprecate constants from defaults (#1590)
metrizable Jun 15, 2020
d259b5c
doc: update documentation with v2.0.0.rc0 changes (#1578)
laurenyu Jun 15, 2020
49bab2b
Merge branch 'master' into merge-master
laurenyu Jun 15, 2020
e4bf952
change: make v2 migration script add version args when needed (#1601)
metrizable Jun 17, 2020
019c2be
infra: bump version to v2.0.0.rc0 (#1603)
laurenyu Jun 17, 2020
730b1aa
breaking: drop Python 2 support (#1609)
laurenyu Jun 18, 2020
c0134e5
infra: remove assumption of Python 2 unit test runs (#1610)
laurenyu Jun 18, 2020
124d6e0
infra: use fixture for Python version in PyTorch integ tests (#1612)
laurenyu Jun 20, 2020
c211417
infra: clean up pickle.load logic in integ tests (#1611)
laurenyu Jun 23, 2020
ce6ba25
infra: use fixture for Python version in MXNet integ tests (#1613)
laurenyu Jun 24, 2020
f6a26bf
breaking: deprecate sagemaker.utils.to_str() (#1621)
laurenyu Jun 24, 2020
acbe02b
breaking: remove check for Python 2 string in sagemaker.predictor._is…
laurenyu Jun 24, 2020
c24e0b5
infra: use fixture for Python version in TF integ tests (#1617)
laurenyu Jun 25, 2020
39c33a2
breaking: refactor name of RealTimePredictor to Predictor (#1629)
metrizable Jun 25, 2020
4f54ab9
breaking: make instance_type optional for Airflow model configs (#1627)
laurenyu Jun 25, 2020
6edac7c
infra: use fixture for Python version in scikit-learn tests (#1630)
laurenyu Jun 25, 2020
c233f67
infra: use fixture for Chainer and XGBoost Python version, clean up r…
laurenyu Jun 25, 2020
7af264a
breaking: refactor Predictor attribute endpoint to endpoint_name (#1…
metrizable Jun 25, 2020
5c6deaf
Merge branch 'master' into zwei
laurenyu Jun 26, 2020
e25c158
infra: change coverage settings to reduce intermittent errors (#1641)
laurenyu Jun 26, 2020
4f6626e
change: add TF migration documentation to error message (#1642)
laurenyu Jun 29, 2020
2dfce2f
fix: ensure generated names are < 63 characters when deploying compil…
laurenyu Jun 29, 2020
a062c6a
change: infer base name from job name in estimator.attach() (#1648)
laurenyu Jun 30, 2020
f9628f8
change: set _current_job_name and base_tuning_job_name in Hyperparame…
laurenyu Jun 30, 2020
906b6ac
infra: add cli modifier for RealTimePredictor and derived classes (#1…
metrizable Jun 30, 2020
cde5500
breaking: deprecate delete_endpoint() for estimators and Hyperparamet…
laurenyu Jun 30, 2020
d388519
breaking: create new inference resources during estimator.deploy() or…
laurenyu Jun 30, 2020
ed2e428
infra: refactor matching logic in v2 migration tool (#1654)
laurenyu Jun 30, 2020
89b27c8
feature: add Predictor.update_endpoint() (#1656)
laurenyu Jul 1, 2020
75198c3
breaking: deprecate update_endpoint arg in deploy() (#1661)
laurenyu Jul 1, 2020
f55bc9d
breaking: rename distributions to distribution in TF/MXNet estimators…
laurenyu Jul 2, 2020
b786a51
breaking: rename session parameter to sagemaker_session in S3 utility…
laurenyu Jul 2, 2020
2d0d549
change: update migration tool for S3 utility functions (#1665)
laurenyu Jul 2, 2020
7342cc7
breaking: create new inference resources during model.deploy() and mo…
laurenyu Jul 6, 2020
5dee4e4
breaking: rename image_name to image_uri (#1667)
laurenyu Jul 6, 2020
4d4dd1f
breaking: rename image to image_uri (#1670)
laurenyu Jul 7, 2020
15f5358
doc: update documentation for image_name/image --> image_uri (#1671)
laurenyu Jul 7, 2020
1487b22
feature: add BaseSerializer and BaseDeserializer (#1668)
bveeramani Jul 7, 2020
e10b29b
change: handle image_uri rename in Airflow model config functions in …
laurenyu Jul 7, 2020
9a0f8ac
breaking: Add BytesDeserializer (#1674)
bveeramani Jul 7, 2020
5cfa6b3
change: handle image_uri rename for estimators and models in v2 migra…
laurenyu Jul 8, 2020
e62d6a4
breaking: remove "train_" where redundant in parameter/variable names…
laurenyu Jul 8, 2020
fe68d4e
fix: Update BytesDeserializer accept header (#1678)
bveeramani Jul 8, 2020
9fd784e
change: handle image_uri rename for Session methods (#1681)
laurenyu Jul 8, 2020
9c22a36
breaking: rename record_deserializer to RecordDeserializer (#1683)
bveeramani Jul 8, 2020
4f00176
Merge branch 'master' into zwei
laurenyu Jul 8, 2020
9fc8a46
breaking: Move StringDeserializer to sagemaker.deserializers (#1677)
bveeramani Jul 8, 2020
4ffa222
change: handle "train_*" renames in v2 migration tool (#1684)
laurenyu Jul 9, 2020
d26d3f6
breaking: Move StreamDeserializer to sagemaker.deserializers (#1679)
bveeramani Jul 9, 2020
a0f1a78
doc: remove 'train_*' prefix from estimator parameters (#1689)
laurenyu Jul 9, 2020
8ec7f05
doc: update documentation with v2.0.0.rc1 changes and bump version (#…
laurenyu Jul 9, 2020
fed2fe9
breaking: rename s3_input to TrainingInput (#1680)
chuyang-deng Jul 9, 2020
f0d34cc
breaking: Move _NumpyDeserializer to sagemaker.deserializers.NumpyDes…
bveeramani Jul 9, 2020
b837dc2
breaking: rename numpy_to_record_serializer to RecordSerializer (#1690)
bveeramani Jul 9, 2020
cc2d047
breaking: Move _CsvDeserializer to sagemaker.deserializers and rename…
bveeramani Jul 10, 2020
fa53af0
breaking: Move _JsonSerializer to sagemaker.serializers.JSONSerialize…
bveeramani Jul 10, 2020
d4612f8
feature: start new module for retrieving prebuilt SageMaker image URI…
laurenyu Jul 10, 2020
0e4c0fa
fix: handle named variables in v2 migration tool (#1702)
laurenyu Jul 13, 2020
24b2ab9
change: add modifier for s3_input class (#1699)
chuyang-deng Jul 13, 2020
6ac82e9
breaking: Move _NPYSerializer to sagemaker.serializers and rename to …
bveeramani Jul 13, 2020
218d786
breaking: Move _JsonDeserializer to sagemaker.deserializers.JSONDeser…
bveeramani Jul 14, 2020
413d05a
feature: handle separate training/inference images and EI in image_ur…
laurenyu Jul 14, 2020
cb85792
infra: generate Chainer latest version fixtures from config (#1710)
laurenyu Jul 15, 2020
910eebd
feature: add support for Amazon algorithms in image_uris.retrieve() (…
laurenyu Jul 15, 2020
9aa708e
breaking: Move _CsvSerializer to sagemaker.serializers.CSVSerializer …
bveeramani Jul 15, 2020
db21a38
infra: use generated TensorFlow version fixtures (#1713)
laurenyu Jul 15, 2020
211f4e5
breaking: preserve script path when S3 source_dir is provided (#941)
laurenyu Jul 16, 2020
3a90f94
change: add XGBoost support to image_uris.retrieve() (#1714)
laurenyu Jul 16, 2020
bd28ca3
change: add MXNet configuration to image_uris.retrieve() (#1716)
laurenyu Jul 16, 2020
d9347db
change: add remaining Amazon algorithms for image_uris.retrieve() (#1…
laurenyu Jul 16, 2020
8df2583
infra: use generated MXNet version fixtures (#1718)
laurenyu Jul 16, 2020
81ab6e2
change: add PyTorch configuration for image_uris.retrieve() (#1721)
laurenyu Jul 17, 2020
e4485b7
breaking: use image_uris.retrieve() for XGBoost URIs (#1719)
laurenyu Jul 17, 2020
2bb6713
change: make image_scope optional for some images in image_uris.retri…
laurenyu Jul 17, 2020
bba192a
change: separate logs() from attach() (#1708)
chuyang-deng Jul 17, 2020
d7dd857
change: use image_uris.retrieve instead of fw_utils.create_image_uri …
laurenyu Jul 17, 2020
67810d7
breaking: deprecate sagemaker.amazon.amazon_estimator.get_image_uri()…
laurenyu Jul 20, 2020
8ff10cc
change: use images_uris.retrieve() for scikit-learn classes (#1728)
laurenyu Jul 21, 2020
590969c
breaking: deprecate fw_registry module and use image_uris.retrieve() …
laurenyu Jul 21, 2020
6b76093
change: use image_uris.retrieve() for RL images (#1729)
laurenyu Jul 22, 2020
1da615f
breaking: deprecate Python SDK CLI (#1740)
chuyang-deng Jul 23, 2020
d4f7ce8
change: Rename BaseDeserializer.deserialize data parameter (#1742)
bveeramani Jul 24, 2020
8ae9f68
breaking: Remove the content_types module (#1744)
bveeramani Jul 24, 2020
0a5b863
breaking: deprecate unused parameters (#1743)
chuyang-deng Jul 24, 2020
d46bd52
feature: Add pandas deserializer (#1738)
bveeramani Jul 24, 2020
4746868
feature: Remove LegacySerializer and LegacyDeserializer (#1741)
bveeramani Jul 24, 2020
e117c76
feature: Add sparse matrix serializer (#1739)
bveeramani Jul 24, 2020
be1deba
doc: fix pip install command (#1750)
laurenyu Jul 27, 2020
0a0d7ec
change: Add allow_pickle parameter to NumpyDeserializer (#1755)
bveeramani Jul 27, 2020
95671e0
doc: document name changes for TFS classes (#1756)
laurenyu Jul 28, 2020
ea9fc4d
feature: Add v2 SerDe compatability (#1735)
bveeramani Jul 28, 2020
6031035
feature: Add JSON Lines serializer (#1760)
bveeramani Jul 28, 2020
7ea07e6
fix: Fix scipy.sparse imports (#1761)
bveeramani Jul 29, 2020
f7b3f6b
change: Improve code style of SerDe compatibility (#1764)
bveeramani Jul 29, 2020
3e3bee8
feature: Add JSON lines deserializer (#1767)
bveeramani Jul 29, 2020
e2e3cb2
change: use image_uris.retrieve for Neo and Inferentia images (#1734)
laurenyu Jul 29, 2020
0b3d286
change: use generated RL version fixtures and update Ray version (#1769)
laurenyu Jul 29, 2020
4632611
change: use image_uris.retrieve() for ModelMonitor default image (#1765)
chuyang-deng Jul 29, 2020
77086de
breaking: deprecate fw_utils.create_image_uri() (#1770)
laurenyu Jul 29, 2020
1562d90
change: use _framework_name for 'protected' attribute (#1775)
metrizable Jul 30, 2020
f573f35
fix: Fix JSONLinesDeserializer (#1777)
bveeramani Jul 30, 2020
2132dd9
breaking: use images_uris.retrieve() for Debugger (#1778)
chuyang-deng Jul 30, 2020
70eb3a5
breaking: deprecate fw_utils.parse_s3_url in favor of s3.parse_s3_url…
laurenyu Jul 30, 2020
284eddc
breaking: deprecate unused functions from utils and fw_utils (#1773)
laurenyu Jul 30, 2020
666910c
breaking: Remove content_type and accept parameters from Predictor (#…
bveeramani Jul 30, 2020
8b7be01
Merge branch 'master' into zwei
laurenyu Jul 31, 2020
abd873e
doc: document v2.0.0 changes (#1774)
laurenyu Jul 31, 2020
a6f51b7
feature: add framework upgrade tool (#1762)
chuyang-deng Jul 31, 2020
cfa9c97
breaking: Add parameters to deploy and remove parameters from create_…
bveeramani Jul 31, 2020
d5e0fa9
breaking: Add LibSVM serializer for XGBoost predictor (#1776)
Jul 31, 2020
c1ec0b1
change: upgrade TFS version and fix py_versions KeyError (#1796)
chuyang-deng Aug 1, 2020
4a15832
fix: Fix PandasDeserializer tests to more accurately mock response (#…
bveeramani Aug 1, 2020
d6ed0c3
breaking: move ShuffleConfig from sagemaker.session to sagemaker.inpu…
laurenyu Aug 1, 2020
0d06276
breaking: deprecate get_ecr_image_uri_prefix (#1781)
laurenyu Aug 1, 2020
23af3b1
breaking: rename estimator.train_image() to estimator.training_image_…
laurenyu Aug 1, 2020
4fb245a
breaking: deprecate is_version_equal_or_higher and is_version_equal_o…
laurenyu Aug 1, 2020
3c96986
breaking: default wait=True for HyperparameterTuner.fit() and Transfo…
laurenyu Aug 1, 2020
4293c26
change: don't require instance_type for image_uris.retrieve() if only…
laurenyu Aug 1, 2020
c4bb695
doc: update KFP full pipeline (#1771)
IvyBazan Aug 1, 2020
4fb16f2
feature: add 1p algorithm image_uris migration tool (#1792)
chuyang-deng Aug 3, 2020
3980a01
feature: Update migration tool to support breaking changes to create_…
bveeramani Aug 3, 2020
b1a2c23
feature: support PyTorch 1.6 training (#1799)
chuyang-deng Aug 3, 2020
804b713
change: ignore code cells with shell commands in v2 migration tool (#…
laurenyu Aug 3, 2020
99773e5
change: Support multiple Accept types (#1794)
bveeramani Aug 4, 2020
4a744a1
breaking: remove unused bin/sagemaker-submit file (#1803)
laurenyu Aug 4, 2020
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
4 changes: 3 additions & 1 deletion .coveragerc
Original file line number Diff line number Diff line change
@@ -1,2 +1,4 @@
[run]
omit = sagemaker/tests/*, sagemaker/tensorflow/tensorflow_serving/*
concurrency = threading
omit = sagemaker/tests/*
timid = True
82 changes: 82 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,63 @@

* add KFP Processing component

## v2.0.0.rc1 (2020-07-08)

### Breaking Changes

* Move StreamDeserializer to sagemaker.deserializers
* Move StringDeserializer to sagemaker.deserializers
* rename record_deserializer to RecordDeserializer
* remove "train_" where redundant in parameter/variable names
* Add BytesDeserializer
* rename image to image_uri
* rename image_name to image_uri
* create new inference resources during model.deploy() and model.transformer()
* rename session parameter to sagemaker_session in S3 utility classes
* rename distributions to distribution in TF/MXNet estimators
* deprecate update_endpoint arg in deploy()
* create new inference resources during estimator.deploy() or estimator.transformer()
* deprecate delete_endpoint() for estimators and HyperparameterTuner
* refactor Predictor attribute endpoint to endpoint_name
* make instance_type optional for Airflow model configs
* refactor name of RealTimePredictor to Predictor
* remove check for Python 2 string in sagemaker.predictor._is_sequence_like()
* deprecate sagemaker.utils.to_str()
* drop Python 2 support

### Features

* add BaseSerializer and BaseDeserializer
* add Predictor.update_endpoint()

### Bug Fixes and Other Changes

* handle "train_*" renames in v2 migration tool
* handle image_uri rename for Session methods in v2 migration tool
* Update BytesDeserializer accept header
* handle image_uri rename for estimators and models in v2 migration tool
* handle image_uri rename in Airflow model config functions in v2 migration tool
* update migration tool for S3 utility functions
* set _current_job_name and base_tuning_job_name in HyperparameterTuner.attach()
* infer base name from job name in estimator.attach()
* ensure generated names are < 63 characters when deploying compiled models
* add TF migration documentation to error message

### Documentation Changes

* update documentation with v2.0.0.rc1 changes
* remove 'train_*' prefix from estimator parameters
* update documentation for image_name/image --> image_uri

### Testing and Release Infrastructure

* refactor matching logic in v2 migration tool
* add cli modifier for RealTimePredictor and derived classes
* change coverage settings to reduce intermittent errors
* clean up pickle.load logic in integ tests
* use fixture for Python version in framework integ tests
* remove assumption of Python 2 unit test runs

## v1.68.0 (2020-07-07)

### Features
Expand Down Expand Up @@ -165,6 +222,31 @@
* set logs to False if wait is False in AutoML
* workflow passing spot training param to training job

## v2.0.0.rc0 (2020-06-17)

### Breaking Changes

* remove estimator parameters for TF legacy mode
* remove legacy `TensorFlowModel` and `TensorFlowPredictor` classes
* force image URI to be passed for legacy TF images
* rename `sagemaker.tensorflow.serving` to `sagemaker.tensorflow.model`
* require `framework_version` and `py_version` for framework estimator and model classes
* change `Model` parameter order to make `model_data` optional

### Bug Fixes and Other Changes

* add v2 migration tool

### Documentation Changes

* update TF documentation to reflect breaking changes and how to upgrade
* start v2 usage and migration documentation

### Testing and Release Infrastructure

* remove scipy from dependencies
* remove TF from optional dependencies

## v1.64.1 (2020-06-16)

### Bug Fixes and Other Changes
Expand Down
4 changes: 3 additions & 1 deletion MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
recursive-include src/sagemaker *
recursive-include src/sagemaker *.py

include src/sagemaker/image_uri_config/*.json

include VERSION
include LICENSE.txt
Expand Down
6 changes: 2 additions & 4 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,6 @@ Supported Python Versions

SageMaker Python SDK is tested on:

- Python 2.7
- Python 3.6
- Python 3.7
- Python 3.8
Expand Down Expand Up @@ -122,10 +121,9 @@ You can install the libraries needed to run the tests by running :code:`pip inst

**Unit tests**


We run unit tests with tox, which is a program that lets you run unit tests for multiple Python versions, and also make sure the
code fits our style guidelines. We run tox with Python 2.7, 3.6, 3.7, and 3.8, so to run unit tests
with the same configuration we do, you'll need to have interpreters for Python 2.7, Python 3.6, Python 3.7, and Python 3.8 installed.
code fits our style guidelines. We run tox with `all of our supported Python versions <#supported-python-versions>`_, so to run unit tests
with the same configuration we do, you need to have interpreters for those Python versions installed.

To run the unit tests with tox, run:

Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.72.1.dev0
2.0.0.rc1
2 changes: 1 addition & 1 deletion bin/sagemaker-submit
Original file line number Diff line number Diff line change
Expand Up @@ -56,4 +56,4 @@ if __name__ == '__main__':
hyperparameters=hyperparameters,
instance_count=args.instance_count,
instance_type=args.instance_type)
estimator.fit(sagemaker.s3_input(args.data))
estimator.fit(sagemaker.TrainingInput(args.data))
4 changes: 2 additions & 2 deletions buildspec-localmodetests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,5 +11,5 @@ phases:

# local mode tests
- start_time=`date +%s`
- execute-command-if-has-matching-changes "tox -e py27,py38 -- tests/integ -m local_mode --durations 50" "tests/integ" "tests/data" "tests/conftest.py" "tests/__init__.py" "src/*.py" "setup.py" "setup.cfg" "buildspec-localmodetests.yml"
- ./ci-scripts/displaytime.sh 'py27,py38 local mode' $start_time
- execute-command-if-has-matching-changes "tox -e py38 -- tests/integ -m local_mode --durations 50" "tests/integ" "tests/data" "tests/conftest.py" "tests/__init__.py" "src/*.py" "setup.py" "setup.cfg" "buildspec-localmodetests.yml"
- ./ci-scripts/displaytime.sh 'py38 local mode' $start_time
2 changes: 1 addition & 1 deletion buildspec-release.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ phases:
# run unit tests
- AWS_ACCESS_KEY_ID= AWS_SECRET_ACCESS_KEY= AWS_SESSION_TOKEN=
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI= AWS_DEFAULT_REGION=
tox -e py27,py36,py37,py38 -- tests/unit
tox -e py36,py37,py38 -- tests/unit

# run a subset of the integration tests
- IGNORE_COVERAGE=- tox -e py36 -- tests/integ -m canary_quick -n 64 --boxed --reruns 2
Expand Down
4 changes: 2 additions & 2 deletions buildspec-unittests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,5 @@ phases:
- start_time=`date +%s`
- AWS_ACCESS_KEY_ID= AWS_SECRET_ACCESS_KEY= AWS_SESSION_TOKEN=
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI= AWS_DEFAULT_REGION=
tox -e py27,py36,py37,py38 --parallel all -- tests/unit
- ./ci-scripts/displaytime.sh 'py27,py36,py37,py38 unit' $start_time
tox -e py36,py37,py38 --parallel all -- tests/unit
- ./ci-scripts/displaytime.sh 'py36,py37,py38 unit' $start_time
2 changes: 1 addition & 1 deletion doc/algorithms/factorization_machines.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker Factorization Machines algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, num_factors, predictor_type, epochs, clip_gradient, mini_batch_size, feature_dim, eps, rescale_grad, bias_lr, linear_lr, factors_lr, bias_wd, linear_wd, factors_wd, bias_init_method, bias_init_scale, bias_init_sigma, bias_init_value, linear_init_method, linear_init_scale, linear_init_sigma, linear_init_value, factors_init_method, factors_init_scale, factors_init_sigma, factors_init_value
:exclude-members: image_uri, num_factors, predictor_type, epochs, clip_gradient, mini_batch_size, feature_dim, eps, rescale_grad, bias_lr, linear_lr, factors_lr, bias_wd, linear_wd, factors_wd, bias_init_method, bias_init_scale, bias_init_sigma, bias_init_value, linear_init_method, linear_init_scale, linear_init_sigma, linear_init_value, factors_init_method, factors_init_scale, factors_init_sigma, factors_init_value


.. autoclass:: sagemaker.FactorizationMachinesModel
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/ipinsights.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker IP Insights algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, num_entity_vectors, vector_dim, batch_metrics_publish_interval, epochs, learning_rate,
:exclude-members: image_uri, num_entity_vectors, vector_dim, batch_metrics_publish_interval, epochs, learning_rate,
num_ip_encoder_layers, random_negative_sampling_rate, shuffled_negative_sampling_rate, weight_decay

.. autoclass:: sagemaker.IPInsightsModel
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/kmeans.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker K-means algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, k, init_method, max_iterations, tol, num_trials, local_init_method, half_life_time_size, epochs, center_factor, mini_batch_size, feature_dim, MAX_DEFAULT_BATCH_SIZE
:exclude-members: image_uri, k, init_method, max_iterations, tol, num_trials, local_init_method, half_life_time_size, epochs, center_factor, mini_batch_size, feature_dim, MAX_DEFAULT_BATCH_SIZE

.. autoclass:: sagemaker.KMeansModel
:members:
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/knn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker K-Nearest Neighbors (k-NN) algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, k, sample_size, predictor_type, dimension_reduction_target, dimension_reduction_type,
:exclude-members: image_uri, k, sample_size, predictor_type, dimension_reduction_target, dimension_reduction_type,
index_metric, index_type, faiss_index_ivf_nlists, faiss_index_pq_m

.. autoclass:: sagemaker.KNNModel
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/lda.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker LDA algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, num_topics, alpha0, max_restarts, max_iterations, mini_batch_size, feature_dim, tol
:exclude-members: image_uri, num_topics, alpha0, max_restarts, max_iterations, mini_batch_size, feature_dim, tol


.. autoclass:: sagemaker.LDAModel
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/linear_learner.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker LinearLearner algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, train_instance_count, train_instance_type, predictor_type, binary_classifier_model_selection_criteria, target_recall, target_precision, positive_example_weight_mult, epochs, use_bias, num_models, parameter, num_calibration_samples, calibration, init_method, init_scale, init_sigma, init_bias, optimizer, loss, wd, l1, momentum, learning_rate, beta_1, beta_2, bias_lr_mult, use_lr_scheduler, lr_scheduler_step, lr_scheduler_factor, lr_scheduler_minimum_lr, lr_scheduler_minimum_lr, mini_batch_size, feature_dim, bias_wd_mult, MAX_DEFAULT_BATCH_SIZE
:exclude-members: image_uri, instance_count, instance_type, predictor_type, binary_classifier_model_selection_criteria, target_recall, target_precision, positive_example_weight_mult, epochs, use_bias, num_models, parameter, num_calibration_samples, calibration, init_method, init_scale, init_sigma, init_bias, optimizer, loss, wd, l1, momentum, learning_rate, beta_1, beta_2, bias_lr_mult, use_lr_scheduler, lr_scheduler_step, lr_scheduler_factor, lr_scheduler_minimum_lr, lr_scheduler_minimum_lr, mini_batch_size, feature_dim, bias_wd_mult, MAX_DEFAULT_BATCH_SIZE

.. autoclass:: sagemaker.LinearLearnerModel
:members:
Expand Down
4 changes: 2 additions & 2 deletions doc/algorithms/ntm.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@ The Amazon SageMaker NTM algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, num_topics, encoder_layers, epochs, encoder_layers_activation, optimizer, tolerance,
num_patience_epochs, batch_norm, rescale_gradient, clip_gradient, weight_decay, learning_rate
:exclude-members: image_uri, num_topics, encoder_layers, epochs, encoder_layers_activation, optimizer, tolerance,
num_patience_epochs, batch_norm, rescale_gradient, clip_gradient, weight_decay, learning_rate


.. autoclass:: sagemaker.NTMModel
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/object2vec.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker Object2Vec algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, enc_dim, mini_batch_size, epochs, early_stopping_patience, early_stopping_tolerance,
:exclude-members: image_uri, enc_dim, mini_batch_size, epochs, early_stopping_patience, early_stopping_tolerance,
dropout, weight_decay, bucket_width, num_classes, mlp_layers, mlp_dim, mlp_activation,
output_layer, optimizer, learning_rate, enc0_network, enc1_network, enc0_cnn_filter_width,
enc1_cnn_filter_width, enc0_max_seq_len, enc1_max_seq_len, enc0_token_embedding_dim,
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/pca.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker PCA algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, num_components, algorithm_mode, subtract_mean, extra_components, mini_batch_size, feature_dim, MAX_DEFAULT_BATCH_SIZE
:exclude-members: image_uri, num_components, algorithm_mode, subtract_mean, extra_components, mini_batch_size, feature_dim, MAX_DEFAULT_BATCH_SIZE


.. autoclass:: sagemaker.PCAModel
Expand Down
2 changes: 1 addition & 1 deletion doc/algorithms/randomcutforest.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The Amazon SageMaker Random Cut Forest algorithm.
:undoc-members:
:show-inheritance:
:inherited-members:
:exclude-members: image, num_trees, num_samples_per_tree, eval_metrics, feature_dim, MINI_BATCH_SIZE
:exclude-members: image_uri, num_trees, num_samples_per_tree, eval_metrics, feature_dim, MINI_BATCH_SIZE


.. autoclass:: sagemaker.RandomCutForestModel
Expand Down
28 changes: 14 additions & 14 deletions doc/amazon_sagemaker_debugger.rst
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,8 @@ The ``DebuggerHookConfig`` accepts one or more objects of type ``CollectionConfi

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
debugger_hook_config=debugger_hook_config
)

Expand Down Expand Up @@ -215,8 +215,8 @@ Sample Usages

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
rules=[Rule.sagemaker(vanishing_gradient())]
)

Expand All @@ -232,8 +232,8 @@ In the example above, Amazon SageMaker pulls the collection configuration best s

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
rules=[Rule.sagemaker(vanishing_gradient()), Rule.sagemaker(weight_update_ratio())]
)

Expand Down Expand Up @@ -269,8 +269,8 @@ Here we modify the ``weight_update_ratio`` rule to store a custom collection rat

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
rules=[
Rule.sagemaker(vanishing_gradient()),
wur_with_customization
Expand Down Expand Up @@ -317,8 +317,8 @@ To evaluate the custom rule against the training:

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
rules=[
custom_gradient_rule
]
Expand All @@ -344,8 +344,8 @@ To enable the debugging hook to emit TensorBoard data, you need to specify the n

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
tensorboard_output_config=tensorboard_output_config
)

Expand Down Expand Up @@ -392,8 +392,8 @@ To disable the hook initialization, you can do so by specifying ``False`` for va

estimator = TensorFlow(
role=role,
train_instance_count=1,
train_instance_type=train_instance_type,
instance_count=1,
instance_type=instance_type,
debugger_hook_config=False
)

Expand Down
2 changes: 1 addition & 1 deletion doc/amazon_sagemaker_model_monitoring.rst
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Using ``DefaultMonitor.create_monitoring_schedule()``, you can create a model mo

my_monitor.create_monitoring_schedule(
monitor_schedule_name='my-monitoring-schedule',
endpoint_input=predictor.endpoint,
endpoint_input=predictor.endpoint_name,
statistics=my_monitor.baseline_statistics(),
constraints=my_monitor.suggested_constraints(),
schedule_cron_expression=CronExpressionGenerator.hourly(),
Expand Down
2 changes: 1 addition & 1 deletion doc/api/inference/predictors.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ Predictors

Make real-time predictions against SageMaker endpoints with Python objects

.. autoclass:: sagemaker.predictor.RealTimePredictor
.. autoclass:: sagemaker.predictor.Predictor
:members:
:undoc-members:
:show-inheritance:
7 changes: 7 additions & 0 deletions doc/api/utility/image_uris.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
Image URIs
----------

.. automodule:: sagemaker.image_uris
:members:
:undoc-members:
:show-inheritance:
29 changes: 0 additions & 29 deletions doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,36 +14,7 @@
from __future__ import absolute_import

import pkg_resources
import sys
from datetime import datetime
from unittest.mock import MagicMock


class Mock(MagicMock):
@classmethod
def __getattr__(cls, name):
"""
Args:
name:
"""
if name == "__version__":
return "1.4.0"
else:
return MagicMock()


MOCK_MODULES = [
"tensorflow",
"tensorflow.core",
"tensorflow.core.framework",
"tensorflow.python",
"tensorflow.python.framework",
"tensorflow_serving",
"tensorflow_serving.apis",
"scipy",
"scipy.sparse",
]
sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)

project = u"sagemaker"
version = pkg_resources.require(project)[0].version
Expand Down
Loading