Skip to content

Create a Simultaneous Equation Solver Algorithm #8773

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 2, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 160 additions & 0 deletions maths/simultaneous_linear_equation_solver.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
"""
https://en.wikipedia.org/wiki/Augmented_matrix

This algorithm solves simultaneous linear equations of the form
λa + λb + λc + λd + ... = λ as [λ, λ, λ, λ, ..., λ]
Where λ are individual coefficients, the no. of equations = no. of coefficients - 1

Note in order to work there must exist 1 equation where all instances of λ != 0
"""


class EquationSolver:
def __init__(self, data):
if len(data) == 0:
raise IndexError("EquationSolver() requires n lists of length n+1")
self.size = len(data)
_length = self.size + 1
if any(len(item) != _length for item in data):
raise IndexError("EquationSolver() requires n lists of length n+1")
for row in data:
if any(not isinstance(column, (int, float)) for column in row):
raise ValueError("EquationSolver() requires lists of integers")
self.data = data

def __repr__(self):
string_builder = "["
for i in range(self.size):
string_builder += "["
for j in range(self.size):
if j == self.size - 1:
string_builder += f"{self.data[i][j]: >4}"
continue
string_builder += f"{str(self.data[i][j]) + ',': >5}"
string_builder += f"{'|': ^5}{self.data[i][-1]:<2}]\n "
string_builder = string_builder[:-2] + "]"
return string_builder

def solve(self):
useable_form = self.make_useable_form()
# Generate a simplified upper triangular matrix
simplified = self.simplify(useable_form)
# Reverse the matrix
simplified = simplified[::-1]
solutions = []
for row in simplified:
current_solution = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0)
continue
solutions.append(current_solution / row[-2])
continue
temp_row = row.copy()[: len(row) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0)
if len(temp_row) == 0:
solutions.append(0)
continue
temp_row = temp_row[1::]
temp_row = temp_row[::-1]
for column_index, column in enumerate(temp_row):
current_solution -= column * solutions[column_index]
solutions.append(current_solution)
final = []
for item in solutions:
final.append(round(item, 5))
return final[::-1]

def make_useable_form(self):
data_set = self.data.copy()
if any(0 in row for row in data_set):
temp_data = data_set.copy()
full_row = []
for row_index, row in enumerate(temp_data):
if 0 not in row:
full_row = data_set.pop(row_index)
break
if not full_row:
raise ValueError("EquationSolver() requires at least 1 full equation")
data_set.insert(0, full_row)
return data_set

def simplify(self, current_set):
# Divide each row by magnitude of first term --> creates 'unit' matrix
duplicate_set = current_set.copy()
for row_index, row in enumerate(duplicate_set):
magnitude = row[0]
for column_index, column in enumerate(row):
if magnitude == 0:
current_set[row_index][column_index] = column
continue
current_set[row_index][column_index] = column / magnitude
# Subtract to cancel term
first_row = current_set[0]
final_set = [first_row]
current_set = current_set[1::]
for row in current_set:
temp_row = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(row)
continue
for column_index in range(len(row)):
temp_row.append(first_row[column_index] - row[column_index])
final_set.append(temp_row)
# Create next recursion iteration set
if len(final_set[0]) != 3:
current_first_row = final_set[0]
current_first_column = []
next_iteration = []
for row in final_set[1::]:
current_first_column.append(row[0])
next_iteration.append(row[1::])
resultant = self.simplify(next_iteration)
for i in range(len(resultant)):
resultant[i].insert(0, current_first_column[i])
resultant.insert(0, current_first_row)
final_set = resultant
return final_set


def solve_simultaneous(equations):
"""
>>> solve_simultaneous([[1, 2, 3],[4, 5, 6]])
[-1.0, 2.0]
>>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]])
[6.4, 1.2, 10.6]
>>> solve_simultaneous([])
Traceback (most recent call last):
...
IndexError: EquationSolver() requires n lists of length n+1
>>> solve_simultaneous([[1, 2, 3],[1, 2]])
Traceback (most recent call last):
...
IndexError: EquationSolver() requires n lists of length n+1
>>> solve_simultaneous([[1, 2, 3],["a", 7, 8]])
Traceback (most recent call last):
...
ValueError: EquationSolver() requires lists of integers
>>> solve_simultaneous([[0, 2, 3],[4, 0, 6]])
Traceback (most recent call last):
...
ValueError: EquationSolver() requires at least 1 full equation
"""
aug = EquationSolver(equations)
return aug.solve()


if __name__ == "__main__":
import doctest

doctest.testmod()
eq = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))