forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimultaneous_linear_equation_solver.py
160 lines (147 loc) · 5.94 KB
/
simultaneous_linear_equation_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
https://en.wikipedia.org/wiki/Augmented_matrix
This algorithm solves simultaneous linear equations of the form
λa + λb + λc + λd + ... = λ as [λ, λ, λ, λ, ..., λ]
Where λ are individual coefficients, the no. of equations = no. of coefficients - 1
Note in order to work there must exist 1 equation where all instances of λ != 0
"""
class EquationSolver:
def __init__(self, data):
if len(data) == 0:
raise IndexError("EquationSolver() requires n lists of length n+1")
self.size = len(data)
_length = self.size + 1
if any(len(item) != _length for item in data):
raise IndexError("EquationSolver() requires n lists of length n+1")
for row in data:
if any(not isinstance(column, (int, float)) for column in row):
raise ValueError("EquationSolver() requires lists of integers")
self.data = data
def __repr__(self):
string_builder = "["
for i in range(self.size):
string_builder += "["
for j in range(self.size):
if j == self.size - 1:
string_builder += f"{self.data[i][j]: >4}"
continue
string_builder += f"{str(self.data[i][j]) + ',': >5}"
string_builder += f"{'|': ^5}{self.data[i][-1]:<2}]\n "
string_builder = string_builder[:-2] + "]"
return string_builder
def solve(self):
useable_form = self.make_useable_form()
# Generate a simplified upper triangular matrix
simplified = self.simplify(useable_form)
# Reverse the matrix
simplified = simplified[::-1]
solutions = []
for row in simplified:
current_solution = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0)
continue
solutions.append(current_solution / row[-2])
continue
temp_row = row.copy()[: len(row) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0)
if len(temp_row) == 0:
solutions.append(0)
continue
temp_row = temp_row[1::]
temp_row = temp_row[::-1]
for column_index, column in enumerate(temp_row):
current_solution -= column * solutions[column_index]
solutions.append(current_solution)
final = []
for item in solutions:
final.append(round(item, 5))
return final[::-1]
def make_useable_form(self):
data_set = self.data.copy()
if any(0 in row for row in data_set):
temp_data = data_set.copy()
full_row = []
for row_index, row in enumerate(temp_data):
if 0 not in row:
full_row = data_set.pop(row_index)
break
if not full_row:
raise ValueError("EquationSolver() requires at least 1 full equation")
data_set.insert(0, full_row)
return data_set
def simplify(self, current_set):
# Divide each row by magnitude of first term --> creates 'unit' matrix
duplicate_set = current_set.copy()
for row_index, row in enumerate(duplicate_set):
magnitude = row[0]
for column_index, column in enumerate(row):
if magnitude == 0:
current_set[row_index][column_index] = column
continue
current_set[row_index][column_index] = column / magnitude
# Subtract to cancel term
first_row = current_set[0]
final_set = [first_row]
current_set = current_set[1::]
for row in current_set:
temp_row = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(row)
continue
for column_index in range(len(row)):
temp_row.append(first_row[column_index] - row[column_index])
final_set.append(temp_row)
# Create next recursion iteration set
if len(final_set[0]) != 3:
current_first_row = final_set[0]
current_first_column = []
next_iteration = []
for row in final_set[1::]:
current_first_column.append(row[0])
next_iteration.append(row[1::])
resultant = self.simplify(next_iteration)
for i in range(len(resultant)):
resultant[i].insert(0, current_first_column[i])
resultant.insert(0, current_first_row)
final_set = resultant
return final_set
def solve_simultaneous(equations):
"""
>>> solve_simultaneous([[1, 2, 3],[4, 5, 6]])
[-1.0, 2.0]
>>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]])
[6.4, 1.2, 10.6]
>>> solve_simultaneous([])
Traceback (most recent call last):
...
IndexError: EquationSolver() requires n lists of length n+1
>>> solve_simultaneous([[1, 2, 3],[1, 2]])
Traceback (most recent call last):
...
IndexError: EquationSolver() requires n lists of length n+1
>>> solve_simultaneous([[1, 2, 3],["a", 7, 8]])
Traceback (most recent call last):
...
ValueError: EquationSolver() requires lists of integers
>>> solve_simultaneous([[0, 2, 3],[4, 0, 6]])
Traceback (most recent call last):
...
ValueError: EquationSolver() requires at least 1 full equation
"""
aug = EquationSolver(equations)
return aug.solve()
if __name__ == "__main__":
import doctest
doctest.testmod()
eq = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))