Skip to content

Hacktoberfest - Added a solution to Project Euler 72 #2940

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 12, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
46 changes: 46 additions & 0 deletions project_euler/problem_72/sol1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
"""
Problem 72 Counting fractions: https://projecteuler.net/problem=72

Description:

Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1,
it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we
get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7,
3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 21 elements in this set.
How many elements would be contained in the set of reduced proper fractions for
d ≤ 1,000,000?

Solution:

Number of numbers between 1 and n that are coprime to n is given by the Euler's Totient
function, phi(n). So, the answer is simply the sum of phi(n) for 2 <= n <= 1,000,000
Sum of phi(d), for all d|n = n. This result can be used to find phi(n) using a sieve.

Time: 3.5 sec
"""


def solution(limit: int = 1_000_000) -> int:
"""
Returns an integer, the solution to the problem
>>> solution(10)
31
>>> solution(100)
3043
>>> solution(1_000)
304191
"""

phi = [i - 1 for i in range(limit + 1)]

for i in range(2, limit + 1):
for j in range(2 * i, limit + 1, i):
phi[j] -= phi[i]

return sum(phi[2 : limit + 1])


if __name__ == "__main__":
print(solution())