Skip to content

lowest_common_ancestor.py static type checking #2329

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Aug 21, 2020
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 37 additions & 28 deletions data_structures/binary_tree/lazy_segment_tree.py
Original file line number Diff line number Diff line change
@@ -1,84 +1,93 @@
import math
from typing import List


class SegmentTree:
def __init__(self, N):
def __init__(self, N: int) -> None:
self.N = N
self.st = [
self.st: List[int] = [
0 for i in range(0, 4 * N)
] # approximate the overall size of segment tree with array N
self.lazy = [0 for i in range(0, 4 * N)] # create array to store lazy update
self.flag = [0 for i in range(0, 4 * N)] # flag for lazy update
self.lazy: List[int] = [
0 for i in range(0, 4 * N)
] # create array to store lazy update
self.flag: List[int] = [0 for i in range(0, 4 * N)] # flag for lazy update

def left(self, idx):
def left(self, idx: int) -> int:
return idx * 2

def right(self, idx):
def right(self, idx: int) -> int:
return idx * 2 + 1

def build(self, idx, l, r, A): # noqa: E741
if l == r: # noqa: E741
self.st[idx] = A[l - 1]
def build(
self, idx: int, left_element: int, right_element: int, A: List[int]
) -> None:
if left_element == right_element:
self.st[idx] = A[left_element - 1]
else:
mid = (l + r) // 2
self.build(self.left(idx), l, mid, A)
self.build(self.right(idx), mid + 1, r, A)
mid = (left_element + right_element) // 2
self.build(self.left(idx), left_element, mid, A)
self.build(self.right(idx), mid + 1, right_element, A)
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])

# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N)
# for each update)
def update(self, idx, l, r, a, b, val): # noqa: E741
def update(
self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int
) -> bool:
"""
update(1, 1, N, a, b, v) for update val v to [a,b]
"""
if self.flag[idx] is True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r: # noqa: E741
if left_element != right_element:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True

if r < a or l > b:
if right_element < a or left_element > b:
return True
if l >= a and r <= b: # noqa: E741
if left_element >= a and right_element <= b:
self.st[idx] = val
if l != r: # noqa: E741
if left_element != right_element:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (l + r) // 2
self.update(self.left(idx), l, mid, a, b, val)
self.update(self.right(idx), mid + 1, r, a, b, val)
mid = (left_element + right_element) // 2
self.update(self.left(idx), left_element, mid, a, b, val)
self.update(self.right(idx), mid + 1, right_element, a, b, val)
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])
return True

# query with O(lg N)
def query(self, idx, l, r, a, b): # noqa: E741
def query(
self, idx: int, left_element: int, right_element: int, a: int, b: int
) -> int:
"""
query(1, 1, N, a, b) for query max of [a,b]
"""
if self.flag[idx] is True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r: # noqa: E741
if left_element != right_element:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
if right_element < a or left_element > b:
return -math.inf
if l >= a and r <= b: # noqa: E741
if left_element >= a and right_element <= b:
return self.st[idx]
mid = (l + r) // 2
q1 = self.query(self.left(idx), l, mid, a, b)
q2 = self.query(self.right(idx), mid + 1, r, a, b)
mid = (left_element + right_element) // 2
q1 = self.query(self.left(idx), left_element, mid, a, b)
q2 = self.query(self.right(idx), mid + 1, right_element, a, b)
return max(q1, q2)

def showData(self):
def showData(self) -> None:
showList = []
for i in range(1, N + 1):
showList += [self.query(1, 1, self.N, i, i)]
Expand Down
17 changes: 12 additions & 5 deletions data_structures/binary_tree/lowest_common_ancestor.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,17 +2,18 @@
# https://en.wikipedia.org/wiki/Breadth-first_search

import queue
from typing import Tuple, List, Dict


def swap(a, b):
def swap(a: int, b: int) -> Tuple[int, int]:
a ^= b
b ^= a
a ^= b
return a, b


# creating sparse table which saves each nodes 2^i-th parent
def creatSparse(max_node, parent):
def creatSparse(max_node: int, parent: List[List[int]]) -> List[List[int]]:
j = 1
while (1 << j) < max_node:
for i in range(1, max_node + 1):
Expand All @@ -22,7 +23,7 @@ def creatSparse(max_node, parent):


# returns lca of node u,v
def LCA(u, v, level, parent):
def LCA(u: int, v: int, level: List[int], parent: List[List[int]]) -> List[List[int]]:
# u must be deeper in the tree than v
if level[u] < level[v]:
u, v = swap(u, v)
Expand All @@ -45,7 +46,13 @@ def LCA(u, v, level, parent):
# sets every nodes direct parent
# parent of root node is set to 0
# calculates depth of each node from root node
def bfs(level, parent, max_node, graph, root=1):
def bfs(
level: List[int],
parent: List[List[int]],
max_node: int,
graph: Dict[int, int],
root=1,
) -> Tuple[List[int], List[List[int]]]:
level[root] = 0
q = queue.Queue(maxsize=max_node)
q.put(root)
Expand All @@ -59,7 +66,7 @@ def bfs(level, parent, max_node, graph, root=1):
return level, parent


def main():
def main() -> None:
max_node = 13
# initializing with 0
parent = [[0 for _ in range(max_node + 10)] for _ in range(20)]
Expand Down