Skip to content

Implement genetic algorithm for optimizing continuous functions #11670

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 12 commits into from
Closed
252 changes: 252 additions & 0 deletions genetic_algorithm/genetic_algorithm_optimization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
import random
import numpy as np
from concurrent.futures import ThreadPoolExecutor


# Parameters

Check failure on line 6 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (I001)

genetic_algorithm/genetic_algorithm_optimization.py:1:1: I001 Import block is un-sorted or un-formatted
N_POPULATION = 100 # Population size
N_GENERATIONS = 500 # Maximum number of generations
N_SELECTED = 50 # Number of parents selected for the next generation
MUTATION_PROBABILITY = 0.1 # Mutation probability
CROSSOVER_RATE = 0.8 # Probability of crossover
SEARCH_SPACE = (-10, 10) # Search space for the variables


# Random number generator
rng = np.random.default_rng()


class GeneticAlgorithm:
def __init__(

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please provide return type hint for the function: __init__. If the function does not return a value, please provide the type hint as: def function() -> None:

self,
function: callable,
bounds: list[tuple[float, float]],
population_size: int,
generations: int,
mutation_prob: float,
crossover_rate: float,
maximize: bool = True,
) -> None:
self.function = function # Target function to optimize
self.bounds = bounds # Search space bounds (for each variable)
self.population_size = population_size
self.generations = generations
self.mutation_prob = mutation_prob
self.crossover_rate = crossover_rate
self.maximize = maximize
self.dim = len(bounds) # Dimensionality of the function (number of variables)

# Initialize population
self.population = self.initialize_population()

def initialize_population(self) -> list[np.ndarray]:
"""
Initialize the population with random individuals within the search space.

Returns:
list[np.ndarray]: A list of individuals represented as numpy arrays.

Example:
>>> ga = GeneticAlgorithm(lambda x, y: x**2 + y**2, [(-10, 10), (-10, 10)], 10, 100, 0.1, 0.8, False)

Check failure on line 50 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:50:89: E501 Line too long (109 > 88)
>>> len(ga.initialize_population()) == ga.population_size
True
"""
return [
rng.uniform(low=self.bounds[i][0], high=self.bounds[i][1], size=self.dim)
for i in range(self.population_size)
]

def fitness(self, individual: np.ndarray) -> float:
"""
Calculate the fitness value (function value) for an individual.

Args:
individual (np.ndarray): The individual to evaluate.

Returns:
float: The fitness value of the individual.

Example:
>>> ga = GeneticAlgorithm(lambda x, y: -(x**2 + y**2), [(-10, 10), (-10, 10)], 10, 100, 0.1, 0.8, True)

Check failure on line 70 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:70:89: E501 Line too long (111 > 88)
>>> ind = np.array([1, 2])
>>> ga.fitness(ind)
-5.0
"""
value = self.function(*individual)
return value if self.maximize else -value # If minimizing, invert the fitness

def select_parents(
self, population_score: list[tuple[np.ndarray, float]]
) -> list[np.ndarray]:
"""
Select top N_SELECTED parents based on fitness.

Args:
population_score (list[tuple[np.ndarray, float]]): The population with their respective fitness scores.

Check failure on line 85 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:85:89: E501 Line too long (115 > 88)

Returns:
list[np.ndarray]: The selected parents for the next generation.

Example:
>>> ga = GeneticAlgorithm(lambda x, y: -(x**2 + y**2), [(-10, 10), (-10, 10)], 10, 100, 0.1, 0.8, True)

Check failure on line 91 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:91:89: E501 Line too long (111 > 88)
>>> pop_score = [(np.array([1, 2]), -5), (np.array([3, 4]), -25)]
>>> len(ga.select_parents(pop_score)) == N_SELECTED
True
"""
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
return [ind for ind, _ in population_score[:N_SELECTED]]

def crossover(
self, parent1: np.ndarray, parent2: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform uniform crossover between two parents to generate offspring.

Args:
parent1 (np.ndarray): The first parent.
parent2 (np.ndarray): The second parent.

Returns:
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.

Example:
>>> ga = GeneticAlgorithm(lambda x, y: -(x**2 + y**2), [(-10, 10), (-10, 10)], 10, 100, 0.1, 0.8, True)

Check failure on line 113 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:113:89: E501 Line too long (111 > 88)
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
>>> len(ga.crossover(parent1, parent2)) == 2
True
"""
if random.random() < self.crossover_rate:
cross_point = random.randint(1, self.dim - 1)
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
return child1, child2
return parent1, parent2

def mutate(self, individual: np.ndarray) -> np.ndarray:
"""
Apply mutation to an individual.

Args:
individual (np.ndarray): The individual to mutate.

Returns:
np.ndarray: The mutated individual.

Example:
>>> ga = GeneticAlgorithm(lambda x, y: -(x**2 + y**2), [(-10, 10), (-10, 10)], 10, 100, 0.1, 0.8, True)

Check failure on line 136 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:136:89: E501 Line too long (111 > 88)
>>> ind = np.array([1.0, 2.0])
>>> mutated = ga.mutate(ind)
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
True
"""
for i in range(self.dim):
if random.random() < self.mutation_prob:
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
return individual

def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
"""
Evaluate the fitness of the entire population in parallel.

Returns:
list[tuple[np.ndarray, float]]: The population with their respective fitness values.

Check failure on line 152 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:152:89: E501 Line too long (96 > 88)

Example:
>>> ga = GeneticAlgorithm(lambda x, y: -(x**2 + y**2), [(-10, 10), (-10, 10)], 10, 100, 0.1, 0.8, True)

Check failure on line 155 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:155:89: E501 Line too long (111 > 88)
>>> eval_population = ga.evaluate_population()
>>> len(eval_population) == ga.population_size # Ensure the population size is correct

Check failure on line 157 in genetic_algorithm/genetic_algorithm_optimization.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (E501)

genetic_algorithm/genetic_algorithm_optimization.py:157:89: E501 Line too long (95 > 88)
True
>>> all(isinstance(ind, tuple) and isinstance(ind[1], float) for ind in eval_population)
True
"""
with ThreadPoolExecutor() as executor:
return list(
executor.map(
lambda individual: (individual, self.fitness(individual)),
self.population,
)
)

def evolve(self) -> np.ndarray:
"""
Evolve the population over the generations to find the best solution.

Returns:
np.ndarray: The best individual found during the evolution process.

Example:
>>> ga = GeneticAlgorithm(lambda x, y: -(x**2 + y**2), [(-10, 10), (-10, 10)], 10, 10, 0.1, 0.8, True)
>>> best_solution = ga.evolve()
>>> len(best_solution) == 2 # Ensure the best solution is a valid individual with correct dimensions
True
"""
for generation in range(self.generations):
# Evaluate population fitness (multithreaded)
population_score = self.evaluate_population()

# Check the best individual
best_individual = max(
population_score, key=lambda score_tuple: score_tuple[1]
)[0]
best_fitness = self.fitness(best_individual)

# Select parents for next generation
parents = self.select_parents(population_score)
next_generation = []

# Generate offspring using crossover and mutation
for i in range(0, len(parents), 2):
parent1, parent2 = parents[i], parents[(i + 1) % len(parents)]
child1, child2 = self.crossover(parent1, parent2)
next_generation.append(self.mutate(child1))
next_generation.append(self.mutate(child2))

# Ensure population size remains the same
self.population = next_generation[: self.population_size]

if generation % 10 == 0:
print(f"Generation {generation}: Best Fitness = {best_fitness}")

return best_individual


# Example target function for optimization
def target_function(var_x: float, var_y: float) -> float:
"""
Example target function (parabola) for optimization.

Args:
var_x (float): The x-coordinate.
var_y (float): The y-coordinate.

Returns:
float: The value of the function at (var_x, var_y).

Example:
>>> target_function(0, 0)
0
>>> target_function(1, 1)
2
"""
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)


# Set bounds for the variables (var_x, var_y)
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10


# Instantiate and run the genetic algorithm
ga = GeneticAlgorithm(
function=target_function,
bounds=bounds,
population_size=N_POPULATION,
generations=N_GENERATIONS,
mutation_prob=MUTATION_PROBABILITY,
crossover_rate=CROSSOVER_RATE,
maximize=False, # Minimize the function
)


best_solution = ga.evolve()
print(f"Best solution found: {best_solution}")
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")
Loading