Skip to content

Matrix decomposition: support angle units grad and turn #427

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 15, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 17 additions & 24 deletions src/matrix-decomposition.js
Original file line number Diff line number Diff line change
Expand Up @@ -253,29 +253,32 @@
];
}

function toRadians(arg) {
var rads = arg.rad || 0;
var degs = arg.deg || 0;
var grads = arg.grad || 0;
var turns = arg.turn || 0;
var angle = (degs / 360 + grads / 400 + turns) * (2 * Math.PI) + rads;
return angle;
}

function convertItemToMatrix(item) {
switch (item.t) {
case 'rotatex':
var rads = item.d[0].rad || 0;
var degs = item.d[0].deg || 0;
var angle = (degs * Math.PI / 180) + rads;
var angle = toRadians(item.d[0]);
return [1, 0, 0, 0,
0, Math.cos(angle), Math.sin(angle), 0,
0, -Math.sin(angle), Math.cos(angle), 0,
0, 0, 0, 1];
case 'rotatey':
var rads = item.d[0].rad || 0;
var degs = item.d[0].deg || 0;
var angle = (degs * Math.PI / 180) + rads;
var angle = toRadians(item.d[0]);
return [Math.cos(angle), 0, -Math.sin(angle), 0,
0, 1, 0, 0,
Math.sin(angle), 0, Math.cos(angle), 0,
0, 0, 0, 1];
case 'rotate':
case 'rotatez':
var rads = item.d[0].rad || 0;
var degs = item.d[0].deg || 0;
var angle = (degs * Math.PI / 180) + rads;
var angle = toRadians(item.d[0]);
return [Math.cos(angle), Math.sin(angle), 0, 0,
-Math.sin(angle), Math.cos(angle), 0, 0,
0, 0, 1, 0,
Expand All @@ -284,9 +287,7 @@
var x = item.d[0];
var y = item.d[1];
var z = item.d[2];
var rads = item.d[3].rad || 0;
var degs = item.d[3].deg || 0;
var angle = (degs * Math.PI / 180) + rads;
var angle = toRadians(item.d[3]);

var sqrLength = x * x + y * y + z * z;
if (sqrLength === 0) {
Expand Down Expand Up @@ -347,28 +348,20 @@
0, 0, item.d[2], 0,
0, 0, 0, 1];
case 'skew':
var xDegs = item.d[0].deg || 0;
var xRads = item.d[0].rad || 0;
var yDegs = item.d[1].deg || 0;
var yRads = item.d[1].rad || 0;
var xAngle = (xDegs * Math.PI / 180) + xRads;
var yAngle = (yDegs * Math.PI / 180) + yRads;
var xAngle = toRadians(item.d[0]);
var yAngle = toRadians(item.d[1]);
return [1, Math.tan(yAngle), 0, 0,
Math.tan(xAngle), 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1];
case 'skewx':
var rads = item.d[0].rad || 0;
var degs = item.d[0].deg || 0;
var angle = (degs * Math.PI / 180) + rads;
var angle = toRadians(item.d[0]);
return [1, 0, 0, 0,
Math.tan(angle), 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1];
case 'skewy':
var rads = item.d[0].rad || 0;
var degs = item.d[0].deg || 0;
var angle = (degs * Math.PI / 180) + rads;
var angle = toRadians(item.d[0]);
return [1, Math.tan(angle), 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
Expand Down
16 changes: 8 additions & 8 deletions test/js/matrix-interpolation.js
Original file line number Diff line number Diff line change
Expand Up @@ -407,42 +407,42 @@ suite('matrix interpolation', function() {
test('decompose various CSS properties with unsupported units', function() {
compareInterpolatedTransforms(
['rotateX(110grad)', 'rotateX(10deg) matrix(1, 0, 0, 1, 0, 0)'],
['rotateX(0deg)', 'rotateX(10deg) matrix(1, 0, 0, 1, 0, 0)'],
['rotateX(99deg)', 'rotateX(10deg) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['rotateY(2turn)', 'rotateY(2rad) matrix(1, 0, 0, 1, 0, 0)'],
['rotateY(0rad)', 'rotateY(2rad) matrix(1, 0, 0, 1, 0, 0)'],
['rotateY(12.56637rad)', 'rotateY(2rad) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['rotate(320deg)', 'rotateY(10grad) matrix(1, 0, 0, 1, 0, 0)'],
['rotate(320deg)', 'rotateY(0deg) matrix(1, 0, 0, 1, 0, 0)'],
['rotate(320deg)', 'rotateY(9deg) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['rotateZ(10grad)', 'rotateZ(2rad) matrix(1, 0, 0, 1, 0, 0)'],
['rotateZ(0rad)', 'rotateZ(2rad) matrix(1, 0, 0, 1, 0, 0)'],
['rotateZ(0.157rad)', 'rotateZ(2rad) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['rotate3d(1, 1, 1, 100deg)', 'rotate3d(1, 1, 1, 2turn) matrix(1, 0, 0, 1, 0, 0)'],
['rotate3d(1, 1, 1, 100deg)', 'rotate3d(1, 1, 1, 0deg) matrix(1, 0, 0, 1, 0, 0)'],
['rotate3d(1, 1, 1, 100deg)', 'rotate3d(1, 1, 1, 720deg) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['skew(30grad)', 'skew(10deg) matrix(1, 0, 0, 1, 0, 0)'],
['skew(0deg)', 'skew(10deg) matrix(1, 0, 0, 1, 0, 0)'],
['skew(27deg)', 'skew(10deg) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['skewx(3grad)', 'skewx(1rad) matrix(1, 0, 0, 1, 0, 0)'],
['skewx(0rad)', 'skewx(1rad) matrix(1, 0, 0, 1, 0, 0)'],
['skewx(0.04712rad)', 'skewx(1rad) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
['skewy(3rad)', 'skewy(1grad) matrix(1, 0, 0, 1, 0, 0)'],
['skewy(3rad)', 'skewy(0rad) matrix(1, 0, 0, 1, 0, 0)'],
['skewy(3rad)', 'skewy(0.0157rad) matrix(1, 0, 0, 1, 0, 0)'],
0.5);

compareInterpolatedTransforms(
Expand Down