Skip to content

Commit 2eaacee

Browse files
kanthuccclauss
andauthored
lowest_common_ancestor.py static type checking (TheAlgorithms#2329)
* adding static type checking to basic_binary_tree.py * Add static type checking to functions with None return type * Applying code review comments * Added missing import statement * fix spaciing * "cleaned up depth_of_tree" * Add doctests and then streamline display() and is_full_binary_tree() * added static typing to lazy_segment_tree.py * added missing import statement * modified variable names for left and right elements * added static typing to lowest_common_ancestor.py * fixed formatting * modified files to meet style guidelines, edited docstrings and added some doctests * added and fixed doctests in lazy_segment_tree.py * fixed errors in doctests Co-authored-by: Christian Clauss <[email protected]>
1 parent d3199da commit 2eaacee

File tree

2 files changed

+107
-50
lines changed

2 files changed

+107
-50
lines changed
Original file line numberDiff line numberDiff line change
@@ -1,84 +1,119 @@
11
import math
2+
from typing import List
23

34

45
class SegmentTree:
5-
def __init__(self, N):
6+
def __init__(self, N: int) -> None:
67
self.N = N
7-
self.st = [
8-
0 for i in range(0, 4 * N)
9-
] # approximate the overall size of segment tree with array N
10-
self.lazy = [0 for i in range(0, 4 * N)] # create array to store lazy update
11-
self.flag = [0 for i in range(0, 4 * N)] # flag for lazy update
8+
# approximate the overall size of segment tree with array N
9+
self.st: List[int] = [0 for i in range(0, 4 * N)]
10+
# create array to store lazy update
11+
self.lazy: List[int] = [0 for i in range(0, 4 * N)]
12+
self.flag: List[int] = [0 for i in range(0, 4 * N)] # flag for lazy update
1213

13-
def left(self, idx):
14+
def left(self, idx: int) -> int:
15+
"""
16+
>>> segment_tree = SegmentTree(15)
17+
>>> segment_tree.left(1)
18+
2
19+
>>> segment_tree.left(2)
20+
4
21+
>>> segment_tree.left(12)
22+
24
23+
"""
1424
return idx * 2
1525

16-
def right(self, idx):
26+
def right(self, idx: int) -> int:
27+
"""
28+
>>> segment_tree = SegmentTree(15)
29+
>>> segment_tree.right(1)
30+
3
31+
>>> segment_tree.right(2)
32+
5
33+
>>> segment_tree.right(12)
34+
25
35+
"""
1736
return idx * 2 + 1
1837

19-
def build(self, idx, l, r, A): # noqa: E741
20-
if l == r: # noqa: E741
21-
self.st[idx] = A[l - 1]
38+
def build(
39+
self, idx: int, left_element: int, right_element: int, A: List[int]
40+
) -> None:
41+
if left_element == right_element:
42+
self.st[idx] = A[left_element - 1]
2243
else:
23-
mid = (l + r) // 2
24-
self.build(self.left(idx), l, mid, A)
25-
self.build(self.right(idx), mid + 1, r, A)
44+
mid = (left_element + right_element) // 2
45+
self.build(self.left(idx), left_element, mid, A)
46+
self.build(self.right(idx), mid + 1, right_element, A)
2647
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])
2748

28-
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N)
29-
# for each update)
30-
def update(self, idx, l, r, a, b, val): # noqa: E741
49+
def update(
50+
self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int
51+
) -> bool:
3152
"""
53+
update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N)
54+
for each update)
55+
3256
update(1, 1, N, a, b, v) for update val v to [a,b]
3357
"""
3458
if self.flag[idx] is True:
3559
self.st[idx] = self.lazy[idx]
3660
self.flag[idx] = False
37-
if l != r: # noqa: E741
61+
if left_element != right_element:
3862
self.lazy[self.left(idx)] = self.lazy[idx]
3963
self.lazy[self.right(idx)] = self.lazy[idx]
4064
self.flag[self.left(idx)] = True
4165
self.flag[self.right(idx)] = True
4266

43-
if r < a or l > b:
67+
if right_element < a or left_element > b:
4468
return True
45-
if l >= a and r <= b: # noqa: E741
69+
if left_element >= a and right_element <= b:
4670
self.st[idx] = val
47-
if l != r: # noqa: E741
71+
if left_element != right_element:
4872
self.lazy[self.left(idx)] = val
4973
self.lazy[self.right(idx)] = val
5074
self.flag[self.left(idx)] = True
5175
self.flag[self.right(idx)] = True
5276
return True
53-
mid = (l + r) // 2
54-
self.update(self.left(idx), l, mid, a, b, val)
55-
self.update(self.right(idx), mid + 1, r, a, b, val)
77+
mid = (left_element + right_element) // 2
78+
self.update(self.left(idx), left_element, mid, a, b, val)
79+
self.update(self.right(idx), mid + 1, right_element, a, b, val)
5680
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])
5781
return True
5882

5983
# query with O(lg N)
60-
def query(self, idx, l, r, a, b): # noqa: E741
84+
def query(
85+
self, idx: int, left_element: int, right_element: int, a: int, b: int
86+
) -> int:
6187
"""
6288
query(1, 1, N, a, b) for query max of [a,b]
89+
>>> A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
90+
>>> segment_tree = SegmentTree(15)
91+
>>> segment_tree.build(1, 1, 15, A)
92+
>>> segment_tree.query(1, 1, 15, 4, 6)
93+
7
94+
>>> segment_tree.query(1, 1, 15, 7, 11)
95+
14
96+
>>> segment_tree.query(1, 1, 15, 7, 12)
97+
15
6398
"""
6499
if self.flag[idx] is True:
65100
self.st[idx] = self.lazy[idx]
66101
self.flag[idx] = False
67-
if l != r: # noqa: E741
102+
if left_element != right_element:
68103
self.lazy[self.left(idx)] = self.lazy[idx]
69104
self.lazy[self.right(idx)] = self.lazy[idx]
70105
self.flag[self.left(idx)] = True
71106
self.flag[self.right(idx)] = True
72-
if r < a or l > b:
107+
if right_element < a or left_element > b:
73108
return -math.inf
74-
if l >= a and r <= b: # noqa: E741
109+
if left_element >= a and right_element <= b:
75110
return self.st[idx]
76-
mid = (l + r) // 2
77-
q1 = self.query(self.left(idx), l, mid, a, b)
78-
q2 = self.query(self.right(idx), mid + 1, r, a, b)
111+
mid = (left_element + right_element) // 2
112+
q1 = self.query(self.left(idx), left_element, mid, a, b)
113+
q2 = self.query(self.right(idx), mid + 1, right_element, a, b)
79114
return max(q1, q2)
80115

81-
def showData(self):
116+
def show_data(self) -> None:
82117
showList = []
83118
for i in range(1, N + 1):
84119
showList += [self.query(1, 1, self.N, i, i)]
@@ -96,4 +131,4 @@ def showData(self):
96131
segt.update(1, 1, N, 1, 3, 111)
97132
print(segt.query(1, 1, N, 1, 15))
98133
segt.update(1, 1, N, 7, 8, 235)
99-
segt.showData()
134+
segt.show_data()

data_structures/binary_tree/lowest_common_ancestor.py

+39-17
Original file line numberDiff line numberDiff line change
@@ -2,17 +2,29 @@
22
# https://en.wikipedia.org/wiki/Breadth-first_search
33

44
import queue
5+
from typing import Dict, List, Tuple
56

67

7-
def swap(a, b):
8+
def swap(a: int, b: int) -> Tuple[int, int]:
9+
"""
10+
Return a tuple (b, a) when given two integers a and b
11+
>>> swap(2,3)
12+
(3, 2)
13+
>>> swap(3,4)
14+
(4, 3)
15+
>>> swap(67, 12)
16+
(12, 67)
17+
"""
818
a ^= b
919
b ^= a
1020
a ^= b
1121
return a, b
1222

1323

14-
# creating sparse table which saves each nodes 2^i-th parent
15-
def creatSparse(max_node, parent):
24+
def create_sparse(max_node: int, parent: List[List[int]]) -> List[List[int]]:
25+
"""
26+
creating sparse table which saves each nodes 2^i-th parent
27+
"""
1628
j = 1
1729
while (1 << j) < max_node:
1830
for i in range(1, max_node + 1):
@@ -22,7 +34,9 @@ def creatSparse(max_node, parent):
2234

2335

2436
# returns lca of node u,v
25-
def LCA(u, v, level, parent):
37+
def lowest_common_ancestor(
38+
u: int, v: int, level: List[int], parent: List[List[int]]
39+
) -> List[List[int]]:
2640
# u must be deeper in the tree than v
2741
if level[u] < level[v]:
2842
u, v = swap(u, v)
@@ -42,10 +56,18 @@ def LCA(u, v, level, parent):
4256

4357

4458
# runs a breadth first search from root node of the tree
45-
# sets every nodes direct parent
46-
# parent of root node is set to 0
47-
# calculates depth of each node from root node
48-
def bfs(level, parent, max_node, graph, root=1):
59+
def breadth_first_search(
60+
level: List[int],
61+
parent: List[List[int]],
62+
max_node: int,
63+
graph: Dict[int, int],
64+
root=1,
65+
) -> Tuple[List[int], List[List[int]]]:
66+
"""
67+
sets every nodes direct parent
68+
parent of root node is set to 0
69+
calculates depth of each node from root node
70+
"""
4971
level[root] = 0
5072
q = queue.Queue(maxsize=max_node)
5173
q.put(root)
@@ -59,7 +81,7 @@ def bfs(level, parent, max_node, graph, root=1):
5981
return level, parent
6082

6183

62-
def main():
84+
def main() -> None:
6385
max_node = 13
6486
# initializing with 0
6587
parent = [[0 for _ in range(max_node + 10)] for _ in range(20)]
@@ -80,14 +102,14 @@ def main():
80102
12: [],
81103
13: [],
82104
}
83-
level, parent = bfs(level, parent, max_node, graph, 1)
84-
parent = creatSparse(max_node, parent)
85-
print("LCA of node 1 and 3 is: ", LCA(1, 3, level, parent))
86-
print("LCA of node 5 and 6 is: ", LCA(5, 6, level, parent))
87-
print("LCA of node 7 and 11 is: ", LCA(7, 11, level, parent))
88-
print("LCA of node 6 and 7 is: ", LCA(6, 7, level, parent))
89-
print("LCA of node 4 and 12 is: ", LCA(4, 12, level, parent))
90-
print("LCA of node 8 and 8 is: ", LCA(8, 8, level, parent))
105+
level, parent = breadth_first_search(level, parent, max_node, graph, 1)
106+
parent = create_sparse(max_node, parent)
107+
print("LCA of node 1 and 3 is: ", lowest_common_ancestor(1, 3, level, parent))
108+
print("LCA of node 5 and 6 is: ", lowest_common_ancestor(5, 6, level, parent))
109+
print("LCA of node 7 and 11 is: ", lowest_common_ancestor(7, 11, level, parent))
110+
print("LCA of node 6 and 7 is: ", lowest_common_ancestor(6, 7, level, parent))
111+
print("LCA of node 4 and 12 is: ", lowest_common_ancestor(4, 12, level, parent))
112+
print("LCA of node 8 and 8 is: ", lowest_common_ancestor(8, 8, level, parent))
91113

92114

93115
if __name__ == "__main__":

0 commit comments

Comments
 (0)