|
17 | 17 | What is the sum of all semidivisible numbers not exceeding 999966663333 ?
|
18 | 18 | """
|
19 | 19 |
|
| 20 | +import math |
20 | 21 |
|
21 |
| -def fib(a, b, n): |
22 |
| - |
23 |
| - if n == 1: |
24 |
| - return a |
25 |
| - elif n == 2: |
26 |
| - return b |
27 |
| - elif n == 3: |
28 |
| - return str(a) + str(b) |
29 |
| - |
30 |
| - temp = 0 |
31 |
| - for x in range(2, n): |
32 |
| - c = str(a) + str(b) |
33 |
| - temp = b |
34 |
| - b = c |
35 |
| - a = temp |
36 |
| - return c |
37 |
| - |
38 |
| - |
39 |
| -def solution(n): |
40 |
| - """Returns the sum of all semidivisible numbers not exceeding n.""" |
41 |
| - semidivisible = [] |
42 |
| - for x in range(n): |
43 |
| - l = [i for i in input().split()] # noqa: E741 |
44 |
| - c2 = 1 |
45 |
| - while 1: |
46 |
| - if len(fib(l[0], l[1], c2)) < int(l[2]): |
47 |
| - c2 += 1 |
48 |
| - else: |
| 22 | + |
| 23 | +def prime_sieve(n: int) -> list: |
| 24 | + """ |
| 25 | + Sieve of Erotosthenes |
| 26 | + Function to return all the prime numbers up to a certain number |
| 27 | + https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes |
| 28 | + >>> prime_sieve(3) |
| 29 | + [2] |
| 30 | + >>> prime_sieve(50) |
| 31 | + [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] |
| 32 | + """ |
| 33 | + is_prime = [True] * n |
| 34 | + is_prime[0] = False |
| 35 | + is_prime[1] = False |
| 36 | + is_prime[2] = True |
| 37 | + |
| 38 | + for i in range(3, int(n ** 0.5 + 1), 2): |
| 39 | + index = i * 2 |
| 40 | + while index < n: |
| 41 | + is_prime[index] = False |
| 42 | + index = index + i |
| 43 | + |
| 44 | + primes = [2] |
| 45 | + |
| 46 | + for i in range(3, n, 2): |
| 47 | + if is_prime[i]: |
| 48 | + primes.append(i) |
| 49 | + |
| 50 | + return primes |
| 51 | + |
| 52 | + |
| 53 | +def solution(limit: int = 999_966_663_333) -> int: |
| 54 | + """ |
| 55 | + Computes the solution to the problem up to the specified limit |
| 56 | + >>> solution(1000) |
| 57 | + 34825 |
| 58 | +
|
| 59 | + >>> solution(10_000) |
| 60 | + 1134942 |
| 61 | +
|
| 62 | + >>> solution(100_000) |
| 63 | + 36393008 |
| 64 | + """ |
| 65 | + primes_upper_bound = math.floor(math.sqrt(limit)) + 100 |
| 66 | + primes = prime_sieve(primes_upper_bound) |
| 67 | + |
| 68 | + matches_sum = 0 |
| 69 | + prime_index = 0 |
| 70 | + last_prime = primes[prime_index] |
| 71 | + |
| 72 | + while (last_prime ** 2) <= limit: |
| 73 | + next_prime = primes[prime_index + 1] |
| 74 | + |
| 75 | + lower_bound = last_prime ** 2 |
| 76 | + upper_bound = next_prime ** 2 |
| 77 | + |
| 78 | + # Get numbers divisible by lps(current) |
| 79 | + current = lower_bound + last_prime |
| 80 | + while upper_bound > current <= limit: |
| 81 | + matches_sum += current |
| 82 | + current += last_prime |
| 83 | + |
| 84 | + # Reset the upper_bound |
| 85 | + while (upper_bound - next_prime) > limit: |
| 86 | + upper_bound -= next_prime |
| 87 | + |
| 88 | + # Add the numbers divisible by ups(current) |
| 89 | + current = upper_bound - next_prime |
| 90 | + while current > lower_bound: |
| 91 | + matches_sum += current |
| 92 | + current -= next_prime |
| 93 | + |
| 94 | + # Remove the numbers divisible by both ups and lps |
| 95 | + current = 0 |
| 96 | + while upper_bound > current <= limit: |
| 97 | + if current <= lower_bound: |
| 98 | + # Increment the current number |
| 99 | + current += last_prime * next_prime |
| 100 | + continue |
| 101 | + |
| 102 | + if current > limit: |
49 | 103 | break
|
50 |
| - semidivisible.append(fib(l[0], l[1], c2 + 1)[int(l[2]) - 1]) |
51 |
| - return semidivisible |
| 104 | + |
| 105 | + # Remove twice since it was added by both ups and lps |
| 106 | + matches_sum -= current * 2 |
| 107 | + |
| 108 | + # Increment the current number |
| 109 | + current += last_prime * next_prime |
| 110 | + |
| 111 | + # Setup for next pair |
| 112 | + last_prime = next_prime |
| 113 | + prime_index += 1 |
| 114 | + |
| 115 | + return matches_sum |
52 | 116 |
|
53 | 117 |
|
54 | 118 | if __name__ == "__main__":
|
55 |
| - for i in solution(int(str(input()).strip())): |
56 |
| - print(i) |
| 119 | + print(solution()) |
0 commit comments