Skip to content

Feature/internal math #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Sep 10, 2020
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
224 changes: 224 additions & 0 deletions src/internal_math.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
use std::mem::swap;

mod atcoder {

mod internal {

/// # Arguments
/// * `m` `1 <= m`
///
/// # Returns
/// x mod m
/* const */
fn safe_mod(mut x: i64, m: i64) -> i64 {
x %= m;
if x < 0 {
x += m;
}
x
}

/// Fast moduler by barrett reduction
/// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
/// NOTE: reconsider after Ice Lake
struct Barrett {
_m: u32,
im: u64,
}

impl Barrett {
/// # Arguments
/// * `m` `1 <= m`
fn new(m: u32) -> Barrett {
Barrett {
_m: m,
im: (-1i64 as u64) / (m as u64) + 1,
}
}

/// # Returns
/// `m`
fn umod(&self) -> u32 {
self._m
}

/// # Parameters
/// * `a` `0 <= a < m`
/// * `b` `0 <= b < m`
///
/// # Returns
/// a * b % m
fn mul(&self, a: u32, b: u32) -> u32 {
// [1] m = 1
// a = b = im = 0, so okay

// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
let mut z = a as u64;
z *= b as u64;
let x = (((z as u128) * (self.im as u128)) >> 64) as u64;
let mut v = (z - x * self._m as u64) as u32;
if self._m <= v {
v += self._m;
}
v
}
}

/// # Parameters
/// * `n` `0 <= n`
/// * `m` `1 <= m`
///
/// # Returns
/// `(x ** n) % m`
/* const */
fn pow_mod_constexpr(x: i64, mut n: i64, m: i32) -> i64 {
if m == 1 {
return 0;
}
let _m = m as u32;
let mut r: u64 = 1;
let mut y: u64 = safe_mod(x, m as i64) as u64;
while n != 0 {
if (n & 1) > 0 {
r = (r * y) % (_m as u64);
}
y = (y * y) % (_m as u64);
n >>= 1;
}
r as i64
}

/// Reference:
/// M. Forisek and J. Jancina,
/// Fast Primality Testing for Integers That Fit into a Machine Word
///
/// # Parameters
/// * `n` `0 <= n`
/* const */
fn is_prime_constexpr(n: i32) -> bool {
let n = n as i64;
match n {
_ if n <= 1 => return false,
2 | 7 | 61 => return true,
_ if n % 2 == 0 => return false,
_ => {}
}
let mut d = n - 1;
while d % 2 == 0 {
d /= 2;
}
for a in [2, 7, 61].iter().copied() {
let mut t = d;
let mut y = pow_mod_constexpr(a, t, n as i32);
while t != n - 1 && y != 1 && y != n - 1 {
y = y * y % n;
t <<= 1;
}
if y != n - 1 && t % 2 == 0 {
return false;
}
}
true
}

// omitted
// template <int n> constexpr bool is_prime = is_prime_constexpr(n);

/// # Parameters
/// * `b` `1 <= b`
///
/// # Returns
/// (g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
/* const */
fn inv_gcd(a: i64, b: i64) -> (i64, i64) {
let a = safe_mod(a, b);
if a == 0 {
return (b, 0);
}

// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
let mut s = b;
let mut t = a;
let mut m0 = 0;
let mut m1 = 1;

while t != 0 {
let u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b

// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b

swap(&mut s, &mut t);
swap(&mut m0, &mut m1);
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if m0 < 0 {
m0 += b / s;
}
(s, m0)
}

/// Compile time (currently not) primitive root
/// @param m must be prime
/// @return primitive root (and minimum in now)
/* const */
fn primitive_root_constexpr(m: i32) -> i32 {
match m {
2 => return 1,
167_772_161 => return 3,
469_762_049 => return 3,
754_974_721 => return 11,
998_244_353 => return 3,
_ => {}
}

let mut divs = [0; 20];
divs[0] = 2;
let mut cnt = 1;
let mut x = (m - 1) / 2;
while x % 2 == 0 {
x /= 2;
}
for i in (3..std::i32::MAX).step_by(2) {
if (i as i64) * (i as i64) <= (x as i64) {
break;
}
if x % i == 0 {
divs[cnt] = i;
cnt += 1;
while x % i == 0 {
x /= i;
}
}
}
if x > 1 {
divs[cnt] = x;
cnt += 1;
}
let mut g = 2;
loop {
if (0..cnt).any(|i| pow_mod_constexpr(g, ((m - 1) / divs[i]) as i64, m) == 1) {
break g as i32;
}
g += 1;
}

// omitted
// template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
}
}
}
2 changes: 2 additions & 0 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,5 @@ mod scc;
mod segtree;
mod string;
mod twosat;

mod internal_math;