Skip to content

Implement indexing operations for XTensorVariables #1429

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion pytensor/xtensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
)
from pytensor.xtensor.shape import concat
from pytensor.xtensor.type import (
XTensorType,
as_xtensor,
xtensor,
xtensor_constant,
Expand Down
186 changes: 186 additions & 0 deletions pytensor/xtensor/indexing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
# HERE LIE DRAGONS
# Useful links to make sense of all the numpy/xarray complexity
# https://numpy.org/devdocs//user/basics.indexing.html
# https://numpy.org/neps/nep-0021-advanced-indexing.html
# https://docs.xarray.dev/en/latest/user-guide/indexing.html
# https://tutorial.xarray.dev/intermediate/indexing/advanced-indexing.html

from pytensor.graph.basic import Apply, Constant, Variable
from pytensor.scalar.basic import discrete_dtypes
from pytensor.tensor.basic import as_tensor
from pytensor.tensor.type_other import NoneTypeT, SliceType, make_slice
from pytensor.xtensor.basic import XOp, xtensor_from_tensor
from pytensor.xtensor.type import XTensorType, as_xtensor, xtensor


def as_idx_variable(idx, indexed_dim: str):
if idx is None or (isinstance(idx, Variable) and isinstance(idx.type, NoneTypeT)):
raise TypeError(
"XTensors do not support indexing with None (np.newaxis), use expand_dims instead"
)
if isinstance(idx, slice):
idx = make_slice(idx)
elif isinstance(idx, Variable) and isinstance(idx.type, SliceType):
pass
elif (
isinstance(idx, tuple)
and len(idx) == 2
and (
isinstance(idx[0], str)
or (
isinstance(idx[0], tuple | list)
and all(isinstance(d, str) for d in idx[0])
)
)
):
# Special case for ("x", array) that xarray supports
dim, idx = idx
if isinstance(idx, Variable) and isinstance(idx.type, XTensorType):
raise IndexError(
f"Giving a dimension name to an XTensorVariable indexer is not supported: {(dim, idx)}. "
"Use .rename() instead."
)
if isinstance(dim, str):
dims = (dim,)
else:
dims = tuple(dim)
idx = as_xtensor(as_tensor(idx), dims=dims)
else:
# Must be integer / boolean indices, we already counted for None and slices
try:
idx = as_xtensor(idx)
except TypeError:
idx = as_tensor(idx)
if idx.type.ndim > 1:
# Same error that xarray raises
raise IndexError(
"Unlabeled multi-dimensional array cannot be used for indexing"
)
# This is implicitly an XTensorVariable with dim matching the indexed one
idx = xtensor_from_tensor(idx, dims=(indexed_dim,)[: idx.type.ndim])

if idx.type.dtype == "bool":
if idx.type.ndim != 1:
# xarray allaws `x[True]`, but I think it is a bug: https://github.com/pydata/xarray/issues/10379
# Otherwise, it is always restricted to 1d boolean indexing arrays
raise NotImplementedError(
"Only 1d boolean indexing arrays are supported"
)
if idx.type.dims != (indexed_dim,):
raise IndexError(
"Boolean indexer should be unlabeled or on the same dimension to the indexed array. "
f"Indexer is on {idx.type.dims} but the target dimension is {indexed_dim}."
)

# Convert to nonzero indices
idx = as_xtensor(idx.values.nonzero()[0], dims=idx.type.dims)

elif idx.type.dtype not in discrete_dtypes:
raise TypeError("Numerical indices must be integers or boolean")
return idx


def get_static_slice_length(slc: Variable, dim_length: None | int) -> int | None:
if dim_length is None:
return None
if isinstance(slc, Constant):
d = slc.data
start, stop, step = d.start, d.stop, d.step
elif slc.owner is None:
# It's a root variable no way of knowing what we're getting
return None
else:
# It's a MakeSliceOp
start, stop, step = slc.owner.inputs
if isinstance(start, Constant):
start = start.data
else:
return None
if isinstance(stop, Constant):
stop = stop.data
else:
return None
if isinstance(step, Constant):
step = step.data
else:
return None
return len(range(*slice(start, stop, step).indices(dim_length)))


class Index(XOp):
__props__ = ()

def make_node(self, x, *idxs):
x = as_xtensor(x)

if any(idx is Ellipsis for idx in idxs):
if idxs.count(Ellipsis) > 1:
raise IndexError("an index can only have a single ellipsis ('...')")
# Convert intermediate Ellipsis to slice(None)
ellipsis_loc = idxs.index(Ellipsis)
n_implied_none_slices = x.type.ndim - (len(idxs) - 1)
idxs = (
*idxs[:ellipsis_loc],
*((slice(None),) * n_implied_none_slices),
*idxs[ellipsis_loc + 1 :],
)

x_ndim = x.type.ndim
x_dims = x.type.dims
x_shape = x.type.shape
out_dims = []
out_shape = []

def combine_dim_info(idx_dim, idx_dim_shape):
if idx_dim not in out_dims:
# First information about the dimension length
out_dims.append(idx_dim)
out_shape.append(idx_dim_shape)
else:
# Dim already introduced in output by a previous index
# Update static shape or raise if incompatible
out_dim_pos = out_dims.index(idx_dim)
out_dim_shape = out_shape[out_dim_pos]
if out_dim_shape is None:
# We don't know the size of the dimension yet
out_shape[out_dim_pos] = idx_dim_shape
elif idx_dim_shape is not None and idx_dim_shape != out_dim_shape:
raise IndexError(
f"Dimension of indexers mismatch for dim {idx_dim}"
)

if len(idxs) > x_ndim:
raise IndexError("Too many indices")

idxs = [
as_idx_variable(idx, dim) for idx, dim in zip(idxs, x_dims, strict=False)
]

for i, idx in enumerate(idxs):
if isinstance(idx.type, SliceType):
idx_dim = x_dims[i]
idx_dim_shape = get_static_slice_length(idx, x_shape[i])
combine_dim_info(idx_dim, idx_dim_shape)
else:
if idx.type.ndim == 0:
# Scalar index, dimension is dropped
continue

assert isinstance(idx.type, XTensorType)

idx_dims = idx.type.dims
for idx_dim in idx_dims:
idx_dim_shape = idx.type.shape[idx_dims.index(idx_dim)]
combine_dim_info(idx_dim, idx_dim_shape)

for dim_i, shape_i in zip(x_dims[i + 1 :], x_shape[i + 1 :]):
# Add back any unindexed dimensions
if dim_i not in out_dims:
# If the dimension was not indexed, we keep it as is
combine_dim_info(dim_i, shape_i)

output = xtensor(dtype=x.type.dtype, shape=out_shape, dims=out_dims)
return Apply(self, [x, *idxs], [output])


index = Index()
28 changes: 28 additions & 0 deletions pytensor/xtensor/math.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,13 @@
import inspect
import sys

import numpy as np

import pytensor.scalar as ps
from pytensor import config
from pytensor.scalar import ScalarOp
from pytensor.scalar.basic import _cast_mapping
from pytensor.xtensor.basic import as_xtensor
from pytensor.xtensor.vectorization import XElemwise


Expand All @@ -29,3 +34,26 @@ def get_all_scalar_ops():

for name, op in get_all_scalar_ops().items():
setattr(this_module, name, op)


_xelemwise_cast_op: dict[str, XElemwise] = {}


def cast(x, dtype):
if dtype == "floatX":
dtype = config.floatX
else:
dtype = np.dtype(dtype).name

x = as_xtensor(x)
if x.type.dtype == dtype:
return x
if x.type.dtype.startswith("complex") and not dtype.startswith("complex"):
raise TypeError(
"Casting from complex to real is ambiguous: consider"
" real(), imag(), angle() or abs()"
)

if dtype not in _xelemwise_cast_op:
_xelemwise_cast_op[dtype] = XElemwise(scalar_op=_cast_mapping[dtype])
return _xelemwise_cast_op[dtype](x)
1 change: 1 addition & 0 deletions pytensor/xtensor/rewriting/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import pytensor.xtensor.rewriting.basic
import pytensor.xtensor.rewriting.indexing
import pytensor.xtensor.rewriting.reduction
import pytensor.xtensor.rewriting.shape
import pytensor.xtensor.rewriting.vectorization
150 changes: 150 additions & 0 deletions pytensor/xtensor/rewriting/indexing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
from itertools import zip_longest

from pytensor import as_symbolic
from pytensor.graph import Constant, node_rewriter
from pytensor.tensor import TensorType, arange, specify_shape
from pytensor.tensor.subtensor import _non_consecutive_adv_indexing
from pytensor.tensor.type_other import NoneTypeT, SliceType
from pytensor.xtensor.basic import tensor_from_xtensor, xtensor_from_tensor
from pytensor.xtensor.indexing import Index
from pytensor.xtensor.rewriting.utils import register_xcanonicalize
from pytensor.xtensor.type import XTensorType


def to_basic_idx(idx):
if isinstance(idx.type, SliceType):
if isinstance(idx, Constant):
return idx.data
elif idx.owner:
# MakeSlice Op
# We transform NoneConsts to regular None so that basic Subtensor can be used if possible
return slice(
*[
None if isinstance(i.type, NoneTypeT) else i
for i in idx.owner.inputs
]
)
else:
return idx
if (
isinstance(idx.type, XTensorType)
and idx.type.ndim == 0
and idx.type.dtype != bool
):
return idx.values
raise TypeError("Cannot convert idx to basic idx")


@register_xcanonicalize
@node_rewriter(tracks=[Index])
def lower_index(fgraph, node):
"""Lower XTensorVariable indexing to regular TensorVariable indexing.

xarray-like indexing has two modes:
1. Orthogonal indexing: Indices of different output labeled dimensions are combined to produce all combinations of indices.
2. Vectorized indexing: Indices of the same output labeled dimension are combined point-wise like in regular numpy advanced indexing.

An Index Op can combine both modes.
To achieve orthogonal indexing using numpy semantics we must use multidimensional advanced indexing.
We expand the dims of each index so they are as large as the number of output dimensions, place the indices that
belong to the same output dimension in the same axis, and those that belong to different output dimensions in different axes.

For instance to do an outer 2x2 indexing we can select x[arange(x.shape[0])[:, None], arange(x.shape[1])[None, :]],
This is a generalization of `np.ix_` that allows combining some dimensions, and not others, as well as have
indices that have more than one dimension at the start.

In addition, xarray basic index (slices), can be vectorized with other advanced indices (if they act on the same output dimension).
However, in numpy, basic indices are always orthogonal to advanced indices. To make them behave like vectorized indices
we have to convert the slices to equivalent advanced indices.
We do this by creating an `arange` tensor that matches the shape of the dimension being indexed,
and then indexing it with the original slice. This index is then handled as a regular advanced index.

Note: The IndexOp has only 2 types of indices: Slices and XTensorVariables. Regular array indices
are converted to the appropriate XTensorVariable by `Index.make_node`
"""

x, *idxs = node.inputs
[out] = node.outputs
x_tensor = tensor_from_xtensor(x)

if all(
(
isinstance(idx.type, SliceType)
or (isinstance(idx.type, XTensorType) and idx.type.ndim == 0)
)
for idx in idxs
):
# Special case having just basic indexing
x_tensor_indexed = x_tensor[tuple(to_basic_idx(idx) for idx in idxs)]

else:
# General case, we have to align the indices positionally to achieve vectorized or orthogonal indexing
# May need to convert basic indexing to advanced indexing if it acts on a dimension that is also indexed by an advanced index
x_dims = x.type.dims
x_shape = tuple(x.shape)
out_ndim = out.type.ndim
out_dims = out.type.dims
aligned_idxs = []
basic_idx_axis = []
# zip_longest adds the implicit slice(None)
for i, (idx, x_dim) in enumerate(
zip_longest(idxs, x_dims, fillvalue=as_symbolic(slice(None)))
):
if isinstance(idx.type, SliceType):
if not any(
(
isinstance(other_idx.type, XTensorType)
and x_dim in other_idx.dims
)
for j, other_idx in enumerate(idxs)
if j != i
):
# We can use basic indexing directly if no other index acts on this dimension
# This is an optimization that avoids creating an unnecessary arange tensor
# and facilitates the use of the specialized AdvancedSubtensor1 when possible
aligned_idxs.append(idx)
basic_idx_axis.append(out_dims.index(x_dim))
else:
# Otherwise we need to convert the basic index into an equivalent advanced indexing
# And align it so it interacts correctly with the other advanced indices
adv_idx_equivalent = arange(x_shape[i])[to_basic_idx(idx)]
ds_order = ["x"] * out_ndim
ds_order[out_dims.index(x_dim)] = 0
aligned_idxs.append(adv_idx_equivalent.dimshuffle(ds_order))
else:
assert isinstance(idx.type, XTensorType)
if idx.type.ndim == 0:
# Scalar index, we can use it directly
aligned_idxs.append(idx.values)
else:
# Vector index, we need to align the indexing dimensions with the base_dims
ds_order = ["x"] * out_ndim
for j, idx_dim in enumerate(idx.dims):
ds_order[out_dims.index(idx_dim)] = j
aligned_idxs.append(idx.values.dimshuffle(ds_order))

# Squeeze indexing dimensions that were not used because we kept basic indexing slices
if basic_idx_axis:
aligned_idxs = [
idx.squeeze(axis=basic_idx_axis)
if (isinstance(idx.type, TensorType) and idx.type.ndim > 0)
else idx
for idx in aligned_idxs
]

x_tensor_indexed = x_tensor[tuple(aligned_idxs)]

if basic_idx_axis and _non_consecutive_adv_indexing(aligned_idxs):
# Numpy moves advanced indexing dimensions to the front when they are not consecutive
# We need to transpose them back to the expected output order
x_tensor_indexed_basic_dims = [out_dims[axis] for axis in basic_idx_axis]
x_tensor_indexed_dims = [
dim for dim in out_dims if dim not in x_tensor_indexed_basic_dims
] + x_tensor_indexed_basic_dims
transpose_order = [x_tensor_indexed_dims.index(dim) for dim in out_dims]
x_tensor_indexed = x_tensor_indexed.transpose(transpose_order)

# Add lost shape information
x_tensor_indexed = specify_shape(x_tensor_indexed, out.type.shape)
new_out = xtensor_from_tensor(x_tensor_indexed, dims=out.type.dims)
return [new_out]
Loading
Loading