Skip to content

Updated docstrings of some distribution classes inside multivariate.py #5982

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 17, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 27 additions & 27 deletions pymc/distributions/multivariate.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,13 +199,13 @@ class MvNormal(Continuous):

Parameters
----------
mu: array
mu : tensor_like of float
Vector of means.
cov: array
cov : tensor_like of float, optional
Covariance matrix. Exactly one of cov, tau, or chol is needed.
tau: array
tau : tensor_like of float, optional
Precision matrix. Exactly one of cov, tau, or chol is needed.
chol: array
chol : tensor_like of float, optional
Cholesky decomposition of covariance matrix. Exactly one of cov,
tau, or chol is needed.
lower: bool, default=True
Expand Down Expand Up @@ -353,19 +353,19 @@ class MvStudentT(Continuous):

Parameters
----------
nu: float
nu : tensor_like of float
Degrees of freedom, should be a positive scalar.
Sigma: matrix
Sigma : tensor_like of float, optional
Covariance matrix. Use `cov` in new code.
mu: array
mu : tensor_like of float, optional
Vector of means.
cov: matrix
cov : tensor_like of float, optional
The covariance matrix.
tau: matrix
tau : tensor_like of float, optional
The precision matrix.
chol: matrix
chol : tensor_like of float, optional
The cholesky factor of the covariance matrix.
lower: bool, default=True
lower : bool, default=True
Whether the cholesky fatcor is given as a lower triangular matrix.
"""
rv_op = mv_studentt
Expand Down Expand Up @@ -439,7 +439,7 @@ class Dirichlet(SimplexContinuous):

Parameters
----------
a: float array
a : tensor_like of float
Concentration parameters (a > 0). The number of categories is given by the
length of the last axis.
"""
Expand Down Expand Up @@ -515,9 +515,9 @@ class Multinomial(Discrete):

Parameters
----------
n: int
n : tensor_like of int
Total counts in each replicate (n > 0).
p: float array
p : tensor_like of float
Probability of each one of the different outcomes (0 <= p <= 1). The number of
categories is given by the length of the last axis. Elements are expected to sum
to 1 along the last axis, and they will be automatically rescaled otherwise.
Expand Down Expand Up @@ -644,10 +644,10 @@ class DirichletMultinomial(Discrete):

Parameters
----------
n : int
n : tensor_like of int
Total counts in each replicate (n > 0).

a : float array
a : tensor_like of float
Dirichlet concentration parameters (a > 0). The number of categories is given by
the length of the last axis.
"""
Expand Down Expand Up @@ -757,15 +757,15 @@ class OrderedMultinomial:

Parameters
----------
eta: float
eta : tensor_like of float
The predictor.
cutpoints: array
cutpoints : tensor_like of float
The length K - 1 array of cutpoints which break :math:`\eta` into
ranges. Do not explicitly set the first and last elements of
:math:`c` to negative and positive infinity.
n: int
n : tensor_like of int
The total number of multinomial trials.
compute_p: boolean, default True
compute_p : boolean, default=True
Whether to compute and store in the trace the inferred probabilities of each
categories,
based on the cutpoints' values. Defaults to True.
Expand Down Expand Up @@ -916,9 +916,9 @@ class Wishart(Continuous):

Parameters
----------
nu: int
nu : tensor_like of int
Degrees of freedom, > 0.
V: array
V : array_like
p x p positive definite matrix.

Notes
Expand Down Expand Up @@ -1007,18 +1007,18 @@ def WishartBartlett(name, S, nu, is_cholesky=False, return_cholesky=False, initv

Parameters
----------
S: ndarray
S : ndarray
p x p positive definite matrix
Or:
p x p lower-triangular matrix that is the Cholesky factor
of the covariance matrix.
nu: int
nu : tensor_like of int
Degrees of freedom, > dim(S).
is_cholesky: bool (default=False)
is_cholesky : bool, default=False
Input matrix S is already Cholesky decomposed as S.T * S
return_cholesky: bool (default=False)
return_cholesky : bool, default=False
Only return the Cholesky decomposed matrix.
initval: ndarray
initval : ndarray
p x p positive definite matrix used to initialize

Notes
Expand Down