Skip to content

Added Generalized Extreme Value distribution #5085

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/api/distributions/continuous.rst
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ Continuous
LogitNormal
Interpolated
PolyaGamma
GenExtreme

.. automodule:: pymc.distributions.continuous
:members:
2 changes: 2 additions & 0 deletions pymc/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
Exponential,
Flat,
Gamma,
GenExtreme,
Gumbel,
HalfCauchy,
HalfFlat,
Expand Down Expand Up @@ -198,4 +199,5 @@
"logcdf",
"_logcdf",
"logpt_sum",
"GenExtreme",
]
181 changes: 181 additions & 0 deletions pymc/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,7 @@ def polyagamma_cdf(*args, **kwargs):
"Moyal",
"AsymmetricLaplace",
"PolyaGamma",
"GenExtreme",
]


Expand Down Expand Up @@ -4246,3 +4247,183 @@ def logcdf(value, h, z):
TensorVariable
"""
return bound(_PolyaGammaLogDistFunc(False)(value, h, z), h > 0, value > 0)


class GenExtremeRV(RandomVariable):
name: str = "Generalized Extreme Value"
ndim_supp: int = 0
ndims_params: List[int] = [0, 0, 0]
dtype: str = "floatX"
_print_name: Tuple[str, str] = ("Generalized Extreme Value", "\\operatorname{GEV}")

def __call__(self, mu=0.0, sigma=1.0, xi=0.0, size=None, **kwargs) -> TensorVariable:
return super().__call__(mu, sigma, xi, size=size, **kwargs)

@classmethod
def rng_fn(
cls,
rng: np.random.RandomState,
mu: np.ndarray,
sigma: np.ndarray,
xi: np.ndarray,
size: Tuple[int, ...],
) -> np.ndarray:
# Notice negative here, since remainder of GenExtreme is based on Coles parametrization
return stats.genextreme.rvs(c=-xi, loc=mu, scale=sigma, random_state=rng, size=size)


gev = GenExtremeRV()


class GenExtreme(Continuous):
r"""
Univariate Generalized Extreme Value log-likelihood

The cdf of this distribution is

.. math::

G(x \mid \mu, \sigma, \xi) = \exp\left[ -\left(1 + \xi z\right)^{-\frac{1}{\xi}} \right]

where

.. math::

z = \frac{x - \mu}{\sigma}

and is defined on the set:

.. math::

\left\{x: 1 + \xi\left(\frac{x-\mu}{\sigma}\right) > 0 \right\}.

Note that this parametrization is per Coles (2001), and differs from that of
Scipy in the sign of the shape parameter, :math:`\xi`.

.. plot::

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 20, 200)
mus = [0., 4., -1.]
sigmas = [2., 2., 4.]
xis = [-0.3, 0.0, 0.3]
for mu, sigma, xi in zip(mus, sigmas, xis):
pdf = st.genextreme.pdf(x, c=-xi, loc=mu, scale=sigma)
plt.plot(x, pdf, label=rf'$\mu$ = {mu}, $\sigma$ = {sigma}, $\xi$={xi}')
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.legend(loc=1)
plt.show()


======== =========================================================================
Support * :math:`x \in [\mu - \sigma/\xi, +\infty]`, when :math:`\xi > 0`
* :math:`x \in \mathbb{R}` when :math:`\xi = 0`
* :math:`x \in [-\infty, \mu - \sigma/\xi]`, when :math:`\xi < 0`
Mean * :math:`\mu + \sigma(g_1 - 1)/\xi`, when :math:`\xi \neq 0, \xi < 1`
* :math:`\mu + \sigma \gamma`, when :math:`\xi = 0`
* :math:`\infty`, when :math:`\xi \geq 1`
where :math:`\gamma` is the Euler-Mascheroni constant, and
:math:`g_k = \Gamma (1-k\xi)`
Variance * :math:`\sigma^2 (g_2 - g_1^2)/\xi^2`, when :math:`\xi \neq 0, \xi < 0.5`
* :math:`\frac{\pi^2}{6} \sigma^2`, when :math:`\xi = 0`
* :math:`\infty`, when :math:`\xi \geq 0.5`
======== =========================================================================

Parameters
----------
mu: float
Location parameter.
sigma: float
Scale parameter (sigma > 0).
xi: float
Shape parameter
scipy: bool
Whether or not to use the Scipy interpretation of the shape parameter
(defaults to `False`).

References
----------
.. [Coles2001] Coles, S.G. (2001).
An Introduction to the Statistical Modeling of Extreme Values
Springer-Verlag, London

"""

rv_op = gev

@classmethod
def dist(cls, mu=0, sigma=1, xi=0, scipy=False, **kwargs):
# If SciPy, use its parametrization, otherwise convert to standard
if scipy:
xi = -xi
mu = at.as_tensor_variable(floatX(mu))
sigma = at.as_tensor_variable(floatX(sigma))
xi = at.as_tensor_variable(floatX(xi))

return super().dist([mu, sigma, xi], **kwargs)

def logp(value, mu, sigma, xi):
"""
Calculate log-probability of Generalized Extreme Value distribution
at specified value.

Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or Aesara tensor

Returns
-------
TensorVariable
"""
scaled = (value - mu) / sigma

logp_expression = at.switch(
at.isclose(xi, 0),
-at.log(sigma) - scaled - at.exp(-scaled),
-at.log(sigma)
- ((xi + 1) / xi) * at.log1p(xi * scaled)
- at.pow(1 + xi * scaled, -1 / xi),
)
# bnd = mu - sigma/xi
return bound(
logp_expression,
1 + xi * (value - mu) / sigma > 0,
# at.switch(xi > 0, value > bnd, value < bnd),
sigma > 0,
)

def logcdf(value, mu, sigma, xi):
"""
Compute the log of the cumulative distribution function for Generalized Extreme Value
distribution at the specified value.

Parameters
----------
value: numeric or np.ndarray or `TensorVariable`
Value(s) for which log CDF is calculated. If the log CDF for
multiple values are desired the values must be provided in a numpy
array or `TensorVariable`.

Returns
-------
TensorVariable
"""
scaled = (value - mu) / sigma
logc_expression = at.switch(
at.isclose(xi, 0), -at.exp(-scaled), -at.pow(1 + xi * scaled, -1 / xi)
)
return bound(logc_expression, 1 + xi * scaled > 0, sigma > 0)

def get_moment(value_var, size, mu, sigma, xi):
r"""
Using the mode, as the mean can be infinite when :math:`\xi > 1`
"""
mode = at.switch(at.isclose(xi, 0), mu, mu + sigma * (at.pow(1 + xi, -xi) - 1) / xi)
return at.full(size, mode, dtype=aesara.config.floatX)
15 changes: 15 additions & 0 deletions pymc/tests/test_distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ def polyagamma_cdf(*args, **kwargs):
Flat,
Gamma,
Geometric,
GenExtreme,
Gumbel,
HalfCauchy,
HalfFlat,
Expand Down Expand Up @@ -2544,6 +2545,20 @@ def test_gumbel(self):
lambda value, mu, beta: sp.gumbel_r.logcdf(value, loc=mu, scale=beta),
)

def test_genextreme(self):
self.check_logp(
GenExtreme,
R,
{"mu": R, "sigma": Rplus, "xi": Domain([-1, -1, -0.5, 0, 0.5, 1, 1])},
lambda value, mu, sigma, xi: sp.genextreme.logpdf(value, c=-xi, loc=mu, scale=sigma),
)
self.check_logcdf(
GenExtreme,
R,
{"mu": R, "sigma": Rplus, "xi": Domain([-1, -1, -0.5, 0, 0.5, 1, 1])},
lambda value, mu, sigma, xi: sp.genextreme.logcdf(value, c=-xi, loc=mu, scale=sigma),
)

def test_logistic(self):
self.check_logp(
Logistic,
Expand Down
14 changes: 14 additions & 0 deletions pymc/tests/test_distributions_random.py
Original file line number Diff line number Diff line change
Expand Up @@ -548,6 +548,20 @@ def seeded_exgaussian_rng_fn(self):
]


class TestGenExtreme(BaseTestDistribution):
pymc_dist = pm.GenExtreme
pymc_dist_params = {"mu": 0, "sigma": 1, "xi": -0.1}
expected_rv_op_params = {"mu": 0, "sigma": 1, "xi": -0.1}
# Notice, using different parametrization of xi sign to scipy
reference_dist_params = {"loc": 0, "scale": 1, "c": 0.1}
reference_dist = seeded_scipy_distribution_builder("genextreme")
tests_to_run = [
"check_pymc_params_match_rv_op",
"check_pymc_draws_match_reference",
"check_rv_size",
]


class TestGumbel(BaseTestDistribution):
pymc_dist = pm.Gumbel
pymc_dist_params = {"mu": 1.5, "beta": 3.0}
Expand Down