Skip to content

Fix deprecation warnings. #3247

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Dec 22, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pymc3/sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -483,7 +483,7 @@ def _check_start_shape(model, start):
# if start var has no shape
else:
# if model var has a specified shape
if var_shape:
if var_shape.size > 0:
e += "\nExpected shape {} for var " \
"'{}', got scalar {}".format(
tuple(var_shape), var.name, start[var.name]
Expand Down
26 changes: 13 additions & 13 deletions pymc3/tests/test_models_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,15 @@ def assertMatrixLabels(self, m, l, mt=None, lt=None):
assert np.all(
np.equal(
m.eval(),
mt if mt is not None else self.data.as_matrix()
mt if mt is not None else self.data.values
)
)
assert l == list(lt or self.data.columns)

def test_numpy_init(self):
m, l = utils.any_to_tensor_and_labels(self.data.as_matrix())
m, l = utils.any_to_tensor_and_labels(self.data.values)
self.assertMatrixLabels(m, l, lt=['x0', 'x1'])
m, l = utils.any_to_tensor_and_labels(self.data.as_matrix(), labels=['x2', 'x3'])
m, l = utils.any_to_tensor_and_labels(self.data.values, labels=['x2', 'x3'])
self.assertMatrixLabels(m, l, lt=['x2', 'x3'])

def test_pandas_init(self):
Expand All @@ -32,42 +32,42 @@ def test_pandas_init(self):

def test_dict_input(self):
m, l = utils.any_to_tensor_and_labels(self.data.to_dict('dict'))
self.assertMatrixLabels(m, l, mt=self.data.as_matrix(l), lt=l)
self.assertMatrixLabels(m, l, mt=self.data[l].values, lt=l)

m, l = utils.any_to_tensor_and_labels(self.data.to_dict('series'))
self.assertMatrixLabels(m, l, mt=self.data.as_matrix(l), lt=l)
self.assertMatrixLabels(m, l, mt=self.data[l].values, lt=l)

m, l = utils.any_to_tensor_and_labels(self.data.to_dict('list'))
self.assertMatrixLabels(m, l, mt=self.data.as_matrix(l), lt=l)
self.assertMatrixLabels(m, l, mt=self.data[l].values, lt=l)

inp = {k: tt.as_tensor_variable(v) for k, v in self.data.to_dict('series').items()}
m, l = utils.any_to_tensor_and_labels(inp)
self.assertMatrixLabels(m, l, mt=self.data.as_matrix(l), lt=l)
self.assertMatrixLabels(m, l, mt=self.data[l].values, lt=l)

def test_list_input(self):
m, l = utils.any_to_tensor_and_labels(self.data.as_matrix().tolist())
m, l = utils.any_to_tensor_and_labels(self.data.values.tolist())
self.assertMatrixLabels(m, l, lt=['x0', 'x1'])
m, l = utils.any_to_tensor_and_labels(self.data.as_matrix().tolist(), labels=['x2', 'x3'])
m, l = utils.any_to_tensor_and_labels(self.data.values.tolist(), labels=['x2', 'x3'])
self.assertMatrixLabels(m, l, lt=['x2', 'x3'])

def test_tensor_input(self):
m, l = utils.any_to_tensor_and_labels(
tt.as_tensor_variable(self.data.as_matrix().tolist()),
tt.as_tensor_variable(self.data.values.tolist()),
labels=['x0', 'x1']
)
self.assertMatrixLabels(m, l, lt=['x0', 'x1'])
m, l = utils.any_to_tensor_and_labels(
tt.as_tensor_variable(self.data.as_matrix().tolist()),
tt.as_tensor_variable(self.data.values.tolist()),
labels=['x2', 'x3'])
self.assertMatrixLabels(m, l, lt=['x2', 'x3'])

def test_user_mistakes(self):
# no labels for tensor variable
with pytest.raises(
ValueError):
utils.any_to_tensor_and_labels(tt.as_tensor_variable(self.data.as_matrix().tolist()))
utils.any_to_tensor_and_labels(tt.as_tensor_variable(self.data.values.tolist()))
# len of labels is bad
with pytest.raises(
ValueError):
utils.any_to_tensor_and_labels(self.data.as_matrix().tolist(),
utils.any_to_tensor_and_labels(self.data.values.tolist(),
labels=['x'])