@@ -1133,7 +1133,7 @@ def test_nonparallelized_chains_are_random(self):
1133
1133
Normal ("x" , 0 , 1 )
1134
1134
for stepper in TestMLDA .steppers :
1135
1135
step = stepper (coarse_models = [coarse_model ])
1136
- trace = sample (chains = 2 , cores = 1 , draws = 20 , tune = 0 , step = step )
1136
+ trace = sample (chains = 2 , cores = 1 , draws = 20 , tune = 0 , step = step , random_seed = 1 )
1137
1137
samples = np .array (trace .get_values ("x" , combine = False ))[:, 5 ]
1138
1138
assert (
1139
1139
len (set (samples )) == 2
@@ -1150,7 +1150,7 @@ def test_parallelized_chains_are_random(self):
1150
1150
Normal ("x" , 0 , 1 )
1151
1151
for stepper in TestMLDA .steppers :
1152
1152
step = stepper (coarse_models = [coarse_model ])
1153
- trace = sample (chains = 2 , cores = 2 , draws = 20 , tune = 0 , step = step )
1153
+ trace = sample (chains = 2 , cores = 2 , draws = 20 , tune = 0 , step = step , random_seed = 1 )
1154
1154
samples = np .array (trace .get_values ("x" , combine = False ))[:, 5 ]
1155
1155
assert len (set (samples )) == 2 , "Parallelized {} " "chains are identical." .format (
1156
1156
stepper
@@ -1176,7 +1176,7 @@ def test_acceptance_rate_against_coarseness(self):
1176
1176
Normal ("x" , 5.0 , 1.0 )
1177
1177
for coarse_model in possible_coarse_models :
1178
1178
step = MLDA (coarse_models = [coarse_model ], subsampling_rates = 3 )
1179
- trace = sample (chains = 1 , draws = 500 , tune = 100 , step = step )
1179
+ trace = sample (chains = 1 , draws = 500 , tune = 100 , step = step , random_seed = 1 )
1180
1180
acc .append (trace .get_sampler_stats ("accepted" ).mean ())
1181
1181
assert acc [0 ] > acc [1 ] > acc [2 ], (
1182
1182
"Acceptance rate is not "
0 commit comments