@@ -1167,6 +1167,7 @@ class Beta(UnitContinuous):
1167
1167
\frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}
1168
1168
1169
1169
.. plot::
1170
+ :context: close-figs
1170
1171
1171
1172
import matplotlib.pyplot as plt
1172
1173
import numpy as np
@@ -1204,14 +1205,14 @@ class Beta(UnitContinuous):
1204
1205
1205
1206
Parameters
1206
1207
----------
1207
- alpha: float
1208
- alpha > 0.
1209
- beta: float
1210
- beta > 0.
1211
- mu: float
1212
- Alternative mean (0 < mu < 1).
1213
- sigma: float
1214
- Alternative standard deviation (0 < sigma < sqrt(mu * (1 - mu ))).
1208
+ alpha : tensor_like of float, optional
1209
+ `` alpha`` > 0. If not specified, then calculated using ``mu`` and ``sigma`` .
1210
+ beta : tensor_like of float, optional
1211
+ `` beta`` > 0. If not specified, then calculated using ``mu`` and ``sigma`` .
1212
+ mu : tensor_like of float, optional
1213
+ Alternative mean (0 < ``mu`` < 1).
1214
+ sigma : tensor_like of float, optional
1215
+ Alternative standard deviation (1 < `` sigma`` < sqrt(``mu`` * (1 - ``mu`` ))).
1215
1216
1216
1217
Notes
1217
1218
-----
@@ -1264,9 +1265,13 @@ def logcdf(value, alpha, beta):
1264
1265
1265
1266
Parameters
1266
1267
----------
1267
- value: numeric or np.ndarray or aesara.tensor
1268
+ value : tensor_like of float
1268
1269
Value(s) for which log CDF is calculated. If the log CDF for multiple
1269
1270
values are desired the values must be provided in a numpy array or Aesara tensor.
1271
+ alpha : tensor_like of float
1272
+ ``alpha`` > 0.
1273
+ beta : tensor_like of float
1274
+ ``beta`` > 0.
1270
1275
1271
1276
Returns
1272
1277
-------
0 commit comments