Skip to content

Add Exponential distribution to model/transforms/autoreparam.py #365

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions pymc_experimental/model/transforms/autoreparam.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,44 @@ def _(
return vip_rep


@_vip_reparam_node.register
def _(
op: pm.Exponential,
node: Apply,
name: str,
dims: List[Variable],
transform: Optional[Transform],
lam: pt.TensorVariable,
) -> ModelDeterministic:
rng, size, scale = node.inputs
scale_centered = scale**lam
scale_noncentered = scale ** (1 - lam)
vip_rv_ = pm.Exponential.dist(
scale=scale_centered,
size=size,
rng=rng,
)
vip_rv_value_ = vip_rv_.clone()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think clone accepts name as kwarg if you want to save one line

vip_rv_.name = f"{name}::tau_"
if transform is not None:
vip_rv_value_.name = f"{vip_rv_.name}_{transform.name}__"
else:
vip_rv_value_.name = vip_rv_.name
vip_rv = model_free_rv(
vip_rv_,
vip_rv_value_,
transform,
*dims,
)

vip_rep_ = scale_noncentered * vip_rv

vip_rep_.name = name

vip_rep = model_deterministic(vip_rep_, *dims)
return vip_rep


def vip_reparametrize(
model: pm.Model,
var_names: Sequence[str],
Expand Down
40 changes: 23 additions & 17 deletions tests/model/transforms/test_autoreparam.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ def model_c():
m = pm.Normal("m")
s = pm.LogNormal("s")
pm.Normal("g", m, s, shape=5)
pm.Exponential("e", scale=s, shape=7)
return mod


Expand All @@ -20,31 +21,34 @@ def model_nc():
m = pm.Normal("m")
s = pm.LogNormal("s")
pm.Deterministic("g", pm.Normal("z", shape=5) * s + m)
pm.Deterministic("e", pm.Exponential("z_e", 1, shape=7) * s)
return mod


def test_reparametrize_created(model_c: pm.Model):
model_reparam, vip = vip_reparametrize(model_c, ["g"])
assert "g" in vip.get_lambda()
assert "g::lam_logit__" in model_reparam.named_vars
assert "g::tau_" in model_reparam.named_vars
@pytest.mark.parametrize("var", ["g", "e"])
def test_reparametrize_created(model_c: pm.Model, var):
model_reparam, vip = vip_reparametrize(model_c, [var])
assert f"{var}" in vip.get_lambda()
assert f"{var}::lam_logit__" in model_reparam.named_vars
assert f"{var}::tau_" in model_reparam.named_vars
vip.set_all_lambda(1)
assert ~np.isfinite(model_reparam["g::lam_logit__"].get_value()).any()
assert ~np.isfinite(model_reparam[f"{var}::lam_logit__"].get_value()).any()


def test_random_draw(model_c: pm.Model, model_nc):
@pytest.mark.parametrize("var", ["g", "e"])
def test_random_draw(model_c: pm.Model, model_nc, var):
model_c = pm.do(model_c, {"m": 3, "s": 2})
model_nc = pm.do(model_nc, {"m": 3, "s": 2})
model_v, vip = vip_reparametrize(model_c, ["g"])
assert "g" in [v.name for v in model_v.deterministics]
c = pm.draw(model_c["g"], random_seed=42, draws=1000)
nc = pm.draw(model_nc["g"], random_seed=42, draws=1000)
model_v, vip = vip_reparametrize(model_c, [var])
assert var in [v.name for v in model_v.deterministics]
c = pm.draw(model_c[var], random_seed=42, draws=1000)
nc = pm.draw(model_nc[var], random_seed=42, draws=1000)
vip.set_all_lambda(1)
v_1 = pm.draw(model_v["g"], random_seed=42, draws=1000)
v_1 = pm.draw(model_v[var], random_seed=42, draws=1000)
vip.set_all_lambda(0)
v_0 = pm.draw(model_v["g"], random_seed=42, draws=1000)
v_0 = pm.draw(model_v[var], random_seed=42, draws=1000)
vip.set_all_lambda(0.5)
v_05 = pm.draw(model_v["g"], random_seed=42, draws=1000)
v_05 = pm.draw(model_v[var], random_seed=42, draws=1000)
np.testing.assert_allclose(c.mean(), nc.mean())
np.testing.assert_allclose(c.mean(), v_0.mean())
np.testing.assert_allclose(v_05.mean(), v_1.mean())
Expand All @@ -57,10 +61,12 @@ def test_random_draw(model_c: pm.Model, model_nc):


def test_reparam_fit(model_c):
model_v, vip = vip_reparametrize(model_c, ["g"])
vars = ["g", "e"]
model_v, vip = vip_reparametrize(model_c, ["g", "e"])
with model_v:
vip.fit(random_seed=42)
np.testing.assert_allclose(vip.get_lambda()["g"], 0, atol=0.01)
vip.fit(50000, random_seed=42)
for var in vars:
np.testing.assert_allclose(vip.get_lambda()[var], 0, atol=0.01)


def test_multilevel():
Expand Down
Loading