Skip to content

Fix testing and remove warnings for r2d2m2cp #284

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Dec 15, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 48 additions & 26 deletions pymc_experimental/distributions/multivariate/r2d2m2cp.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# limitations under the License.


from typing import Sequence, Union
from typing import Sequence, Tuple, Union

import numpy as np
import pymc as pm
Expand All @@ -22,14 +22,23 @@
__all__ = ["R2D2M2CP"]


def _psivar2musigma(psi: pt.TensorVariable, explained_var: pt.TensorVariable, psi_mask):
def _psivar2musigma(
psi: pt.TensorVariable,
explained_var: pt.TensorVariable,
psi_mask: Union[pt.TensorLike, None],
) -> Tuple[pt.TensorVariable, pt.TensorVariable]:
sign = pt.sign(psi - 0.5)
if psi_mask is not None:
# any computation might be ignored for ~psi_mask
# sign and explained_var are used
psi = pt.where(psi_mask, psi, 0.5)
pi = pt.erfinv(2 * psi - 1)
f = (1 / (2 * pi**2 + 1)) ** 0.5
sigma = explained_var**0.5 * f
mu = sigma * pi * 2**0.5
if psi_mask is not None:
return (
pt.where(psi_mask, mu, pt.sign(pi) * explained_var**0.5),
pt.where(psi_mask, mu, sign * explained_var**0.5),
pt.where(psi_mask, sigma, 0),
)
else:
Expand All @@ -47,7 +56,7 @@ def _R2D2M2CP_beta(
psi_mask,
dims: Union[str, Sequence[str]],
centered=False,
):
) -> pt.TensorVariable:
"""R2D2M2CP beta prior.

Parameters
Expand All @@ -65,7 +74,7 @@ def _R2D2M2CP_beta(
psi: tensor
probability of a coefficients to be positive
"""
explained_variance = phi * pt.expand_dims(r2 * output_sigma**2, -1)
explained_variance = phi * pt.expand_dims(r2 * output_sigma**2, (-1,))
mu_param, std_param = _psivar2musigma(psi, explained_variance, psi_mask=psi_mask)
if not centered:
with pm.Model(name):
Expand Down Expand Up @@ -107,7 +116,10 @@ def _R2D2M2CP_beta(
return beta


def _broadcast_as_dims(*values, dims):
def _broadcast_as_dims(
*values: np.ndarray,
dims: Sequence[str],
) -> Union[Tuple[np.ndarray, ...], np.ndarray]:
model = pm.modelcontext(None)
shape = [len(model.coords[d]) for d in dims]
ret = tuple(np.broadcast_to(v, shape) for v in values)
Expand All @@ -117,7 +129,12 @@ def _broadcast_as_dims(*values, dims):
return ret


def _psi_masked(positive_probs, positive_probs_std, *, dims):
def _psi_masked(
positive_probs: pt.TensorLike,
positive_probs_std: pt.TensorLike,
*,
dims: Sequence[str],
) -> Tuple[Union[pt.TensorLike, None], pt.TensorVariable]:
if not (
isinstance(positive_probs, pt.Constant) and isinstance(positive_probs_std, pt.Constant)
):
Expand Down Expand Up @@ -152,7 +169,12 @@ def _psi_masked(positive_probs, positive_probs_std, *, dims):
return mask, psi


def _psi(positive_probs, positive_probs_std, *, dims):
def _psi(
positive_probs: pt.TensorLike,
positive_probs_std: Union[pt.TensorLike, None],
*,
dims: Sequence[str],
) -> Tuple[Union[pt.TensorLike, None], pt.TensorVariable]:
if positive_probs_std is not None:
mask, psi = _psi_masked(
positive_probs=pt.as_tensor(positive_probs),
Expand All @@ -171,12 +193,12 @@ def _psi(positive_probs, positive_probs_std, *, dims):


def _phi(
variables_importance,
variance_explained,
importance_concentration,
variables_importance: Union[pt.TensorLike, None],
variance_explained: Union[pt.TensorLike, None],
importance_concentration: Union[pt.TensorLike, None],
*,
dims,
):
dims: Sequence[str],
) -> pt.TensorVariable:
*broadcast_dims, dim = dims
model = pm.modelcontext(None)
if variables_importance is not None:
Expand All @@ -201,20 +223,20 @@ def _phi(


def R2D2M2CP(
name,
output_sigma,
input_sigma,
name: str,
output_sigma: pt.TensorLike,
input_sigma: pt.TensorLike,
*,
dims,
r2,
variables_importance=None,
variance_explained=None,
importance_concentration=None,
r2_std=None,
positive_probs=0.5,
positive_probs_std=None,
centered=False,
):
dims: Sequence[str],
r2: pt.TensorLike,
variables_importance: Union[pt.TensorLike, None] = None,
variance_explained: Union[pt.TensorLike, None] = None,
importance_concentration: Union[pt.TensorLike, None] = None,
r2_std: Union[pt.TensorLike, None] = None,
positive_probs: Union[pt.TensorLike, None] = 0.5,
positive_probs_std: Union[pt.TensorLike, None] = None,
centered: bool = False,
) -> tuple[pt.TensorVariable, pt.TensorVariable]:
"""R2D2M2CP Prior.

Parameters
Expand Down
70 changes: 61 additions & 9 deletions pymc_experimental/tests/distributions/test_multivariate.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,17 @@
import numpy as np
import pymc as pm
import pytensor
import pytest

import pymc_experimental as pmx


class TestR2D2M2CP:
@pytest.fixture(autouse=True)
def fast_compile(self):
with pytensor.config.change_flags(mode="FAST_COMPILE", exception_verbosity="high"):
yield

@pytest.fixture(autouse=True)
def model(self):
# every method is within a model
Expand Down Expand Up @@ -95,17 +101,13 @@ def phi_args(self, request, phi_args_base):
phi_args_base["importance_concentration"] = 10
return phi_args_base

def test_init(
def test_init_r2(
self,
dims,
centered,
input_std,
output_std,
r2,
r2_std,
positive_probs,
positive_probs_std,
phi_args,
model: pm.Model,
):
eps, beta = pmx.distributions.R2D2M2CP(
Expand All @@ -115,10 +117,6 @@ def test_init(
dims=dims,
r2=r2,
r2_std=r2_std,
centered=centered,
positive_probs_std=positive_probs_std,
positive_probs=positive_probs,
**phi_args
)
assert not np.isnan(beta.eval()).any()
assert eps.eval().shape == output_std.shape
Expand All @@ -127,9 +125,63 @@ def test_init(
assert "beta" in model.named_vars
assert ("beta::r2" in model.named_vars) == (r2_std is not None), set(model.named_vars)
# phi is only created if variable importance is not None and there is more than one var
assert np.isfinite(model.compile_logp()(model.initial_point()))

def test_init_importance(
self,
dims,
centered,
input_std,
output_std,
phi_args,
model: pm.Model,
):
eps, beta = pmx.distributions.R2D2M2CP(
"beta",
output_std,
input_std,
dims=dims,
r2=1,
centered=centered,
**phi_args,
)
assert not np.isnan(beta.eval()).any()
assert eps.eval().shape == output_std.shape
assert beta.eval().shape == input_std.shape
# r2 rv is only created if r2 std is not None
assert "beta" in model.named_vars
# phi is only created if variable importance is not None and there is more than one var
assert ("beta::phi" in model.named_vars) == (
"variables_importance" in phi_args or "importance_concentration" in phi_args
), set(model.named_vars)
assert np.isfinite(model.compile_logp()(model.initial_point()))

def test_init_positive_probs(
self,
dims,
centered,
input_std,
output_std,
positive_probs,
positive_probs_std,
model: pm.Model,
):
eps, beta = pmx.distributions.R2D2M2CP(
"beta",
output_std,
input_std,
dims=dims,
r2=1.0,
centered=centered,
positive_probs_std=positive_probs_std,
positive_probs=positive_probs,
)
assert not np.isnan(beta.eval()).any()
assert eps.eval().shape == output_std.shape
assert beta.eval().shape == input_std.shape
# r2 rv is only created if r2 std is not None
assert "beta" in model.named_vars
# phi is only created if variable importance is not None and there is more than one var
assert ("beta::psi" in model.named_vars) == (
positive_probs_std is not None and positive_probs_std.any()
), set(model.named_vars)
Expand Down