Skip to content

Refactor bayesian neural network example #670

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
274 changes: 120 additions & 154 deletions examples/variational_inference/bayesian_neural_network_advi.ipynb

Large diffs are not rendered by default.

34 changes: 19 additions & 15 deletions examples/variational_inference/bayesian_neural_network_advi.myst.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,6 @@ import matplotlib.pyplot as plt
import numpy as np
import pymc as pm
import pytensor
import pytensor.tensor as pt
import seaborn as sns

from sklearn.datasets import make_moons
Expand Down Expand Up @@ -103,7 +102,7 @@ ax.scatter(X[Y == 0, 0], X[Y == 0, 1], color="C0", label="Class 0")
ax.scatter(X[Y == 1, 0], X[Y == 1, 1], color="C1", label="Class 1")
sns.despine()
ax.legend()
ax.set(xlabel="X", ylabel="Y", title="Toy binary classification data set");
ax.set(xlabel="X1", ylabel="X2", title="Toy binary classification data set");
```

### Model specification
Expand All @@ -127,11 +126,11 @@ def construct_nn(ann_input, ann_output):
"hidden_layer_1": np.arange(n_hidden),
"hidden_layer_2": np.arange(n_hidden),
"train_cols": np.arange(X_train.shape[1]),
# "obs_id": np.arange(X_train.shape[0]),
"obs_id": np.arange(X_train.shape[0]),
}
with pm.Model(coords=coords) as neural_network:
ann_input = pm.Data("ann_input", X_train, mutable=True, dims=("obs_id", "train_cols"))
ann_output = pm.Data("ann_output", Y_train, mutable=True, dims="obs_id")
ann_input = pm.Data("ann_input", X_train, dims=("obs_id", "train_cols"))
ann_output = pm.Data("ann_output", Y_train, dims="obs_id")

# Weights from input to hidden layer
weights_in_1 = pm.Normal(
Expand Down Expand Up @@ -215,14 +214,15 @@ pred = ppc.posterior_predictive["out"].mean(("chain", "draw")) > 0.5

```{code-cell} ipython3
fig, ax = plt.subplots()
ax.scatter(X_test[pred == 0, 0], X_test[pred == 0, 1], color="C0")
ax.scatter(X_test[pred == 1, 0], X_test[pred == 1, 1], color="C1")
ax.scatter(X_test[pred == 0, 0], X_test[pred == 0, 1], color="C0", label="Predicted 0")
ax.scatter(X_test[pred == 1, 0], X_test[pred == 1, 1], color="C1", label="Predicted 1")
sns.despine()
ax.set(title="Predicted labels in testing set", xlabel="X", ylabel="Y");
ax.legend()
ax.set(title="Predicted labels in testing set", xlabel="X1", ylabel="X2");
```

```{code-cell} ipython3
print(f"Accuracy = {(Y_test == pred.values).mean() * 100}%")
print(f"Accuracy = {(Y_test == pred.values).mean() * 100:.2f}%")
```

Hey, our neural network did all right!
Expand All @@ -240,16 +240,21 @@ jupyter:
---
grid = pm.floatX(np.mgrid[-3:3:100j, -3:3:100j])
grid_2d = grid.reshape(2, -1).T
dummy_out = np.ones(grid.shape[1], dtype=np.int8)
dummy_out = np.ones(grid_2d.shape[0], dtype=np.int8)
```

```{code-cell} ipython3
---
jupyter:
outputs_hidden: true
---
coords_eval = {
"train_cols": np.arange(grid_2d.shape[1]),
"obs_id": np.arange(grid_2d.shape[0]),
}

with neural_network:
pm.set_data(new_data={"ann_input": grid_2d, "ann_output": dummy_out})
pm.set_data(new_data={"ann_input": grid_2d, "ann_output": dummy_out}, coords=coords_eval)
ppc = pm.sample_posterior_predictive(trace)
```

Expand All @@ -268,7 +273,7 @@ contour = ax.contourf(
ax.scatter(X_test[pred == 0, 0], X_test[pred == 0, 1], color="C0")
ax.scatter(X_test[pred == 1, 0], X_test[pred == 1, 1], color="C1")
cbar = plt.colorbar(contour, ax=ax)
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel="X", ylabel="Y")
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel="X1", ylabel="X2")
cbar.ax.set_ylabel("Posterior predictive mean probability of class label = 0");
```

Expand All @@ -285,7 +290,7 @@ contour = ax.contourf(
ax.scatter(X_test[pred == 0, 0], X_test[pred == 0, 1], color="C0")
ax.scatter(X_test[pred == 1, 0], X_test[pred == 1, 1], color="C1")
cbar = plt.colorbar(contour, ax=ax)
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel="X", ylabel="Y")
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel="X1", ylabel="X2")
cbar.ax.set_ylabel("Uncertainty (posterior predictive standard deviation)");
```

Expand All @@ -300,8 +305,7 @@ So far, we have trained our model on all data at once. Obviously this won't scal
Fortunately, ADVI can be run on mini-batches as well. It just requires some setting up:

```{code-cell} ipython3
minibatch_x = pm.Minibatch(X_train, batch_size=50)
minibatch_y = pm.Minibatch(Y_train, batch_size=50)
minibatch_x, minibatch_y = pm.Minibatch(X_train, Y_train, batch_size=50)
neural_network_minibatch = construct_nn(minibatch_x, minibatch_y)
with neural_network_minibatch:
approx = pm.fit(40000, method=pm.ADVI())
Expand Down
Loading