Skip to content

HOTFIX: typo in title of new notebook, #552 #553

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 35 additions & 2 deletions examples/causal_inference/interventional_distribution.ipynb
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "f2e8530c-5ba0-4041-a309-18919d5d0533",
"metadata": {
Expand All @@ -12,7 +13,7 @@
},
"source": [
"(interventional_distribution)=\n",
"# Interventional distributions and graph mutilation with the do-operator\n",
"# Interventional distributions and graph mutation with the do-operator\n",
"\n",
":::{post} July, 2023\n",
":tags: causal inference, do-operator, graph mutation\n",
Expand All @@ -22,6 +23,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8f973a4f-def4-4fb6-b166-2aefbdf5eee2",
"metadata": {
Expand All @@ -44,6 +46,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ed816fbf-320c-44f7-a711-cb4750d86e24",
"metadata": {},
Expand Down Expand Up @@ -75,6 +78,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e2441116-c8a5-41af-be95-9eeddf2b0e2e",
"metadata": {
Expand Down Expand Up @@ -136,6 +140,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "782d6135-2e59-4462-8b9c-9832a58751ef",
"metadata": {
Expand Down Expand Up @@ -259,6 +264,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f618f053-266b-4006-a521-f892cb8519e1",
"metadata": {
Expand All @@ -281,6 +287,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ca2ed504-ffda-4f1d-8d18-cdb06608202b",
"metadata": {
Expand All @@ -301,6 +308,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "83b8106f-c9e1-4277-ba38-f13b03a33ef6",
"metadata": {
Expand Down Expand Up @@ -466,6 +474,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "56832ddc-ef61-4dbf-b46f-b6ef2ae8820e",
"metadata": {
Expand All @@ -482,6 +491,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "24792fb8-3e40-41b5-a26a-4a2d4da052ed",
"metadata": {
Expand All @@ -503,6 +513,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "aac4d49b-6a1e-4d77-a9c7-205050bebb9f",
"metadata": {
Expand Down Expand Up @@ -572,6 +583,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b70e42b0-61a1-4c62-8dd9-d973d60d7946",
"metadata": {
Expand Down Expand Up @@ -727,6 +739,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3bb5134c-f476-4b8f-9338-1ed07e1fbb13",
"metadata": {
Expand Down Expand Up @@ -763,6 +776,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e2d1a7ca-1948-4165-92aa-3713df60b73b",
"metadata": {},
Expand All @@ -773,6 +787,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "453edf32-48d2-4d7f-96fb-6fb61851de9e",
"metadata": {
Expand All @@ -783,7 +798,7 @@
"tags": []
},
"source": [
"However, we are going to implement these using Bayesian causal DAGs with PyMC. Let's see how we can do this, then generate samples from them using `pm.sample_prior_predictive`. As we go with each DAG, we'll package the data up in `DataFrame`'s for plotting later, and also plot the graphviz representation of the PyMC models. You'll see that while these are a fraction more visually complex, they do actually match up with the causal DAGs we've specified above."
"However, we are going to implement these using Bayesian causal DAGs with PyMC. Let's see how we can do this, then generate samples from them using `pm.sample_prior_predictive`. As we go with each DAG, we'll extract the samples for plotting later, and also plot the graphviz representation of the PyMC models. You'll see that while these are a fraction more visually complex, they do actually match up with the causal DAGs we've specified above."
]
},
{
Expand Down Expand Up @@ -1095,6 +1110,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "07b66542-dd10-43b1-9dfb-5b438f756736",
"metadata": {
Expand Down Expand Up @@ -1164,6 +1180,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6625a68d-e19e-4490-b486-29e3bff42716",
"metadata": {
Expand All @@ -1178,6 +1195,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b44eef67-7ad3-46cc-b18c-e589b9fd271b",
"metadata": {
Expand All @@ -1192,6 +1210,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2d30eb22-2560-495a-8af2-f9c9fe04848a",
"metadata": {},
Expand Down Expand Up @@ -1219,6 +1238,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "99ccc753-e3ef-4834-b02f-4a8d82749fe5",
"metadata": {},
Expand All @@ -1227,6 +1247,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d0896e42-ee27-4c37-a065-7c78d6f6c0e2",
"metadata": {
Expand Down Expand Up @@ -1321,6 +1342,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "95844edc-2e47-47a1-986a-c6e0b30386c0",
"metadata": {},
Expand Down Expand Up @@ -1471,6 +1493,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "688de710-654d-4905-a328-81941aaa1fe6",
"metadata": {
Expand All @@ -1485,6 +1508,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "01ba8784-cd8b-45e8-b9ec-1fd6d56b010a",
"metadata": {
Expand Down Expand Up @@ -1532,6 +1556,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d9d4fe62-b694-4a90-9e7f-21344f69fcf6",
"metadata": {
Expand Down Expand Up @@ -1599,6 +1624,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f546f9e2-0f9b-4eaa-93e3-b5887b757a37",
"metadata": {
Expand Down Expand Up @@ -1675,6 +1701,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9c4122ee-9709-4c9c-b0eb-a4c20e1b7f3a",
"metadata": {
Expand Down Expand Up @@ -1761,6 +1788,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "dec5c8d6-e562-47ca-a263-2e8269704d04",
"metadata": {
Expand All @@ -1775,6 +1803,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e546b0ab-dd66-4c20-b814-c8cd1bc6c710",
"metadata": {
Expand All @@ -1797,6 +1826,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f17a9b3b-a3c2-4919-893b-569049db03d6",
"metadata": {
Expand All @@ -1812,6 +1842,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ecbb878d-531b-4c96-afe2-c39f928b9162",
"metadata": {},
Expand All @@ -1824,6 +1855,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9fd548d0-5977-4a19-935a-506e86063887",
"metadata": {},
Expand Down Expand Up @@ -1871,6 +1903,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "62e8040f-452c-4a11-90f5-fa94eb03c971",
"metadata": {
Expand Down
4 changes: 2 additions & 2 deletions examples/causal_inference/interventional_distribution.myst.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ kernelspec:
+++ {"editable": true, "slideshow": {"slide_type": ""}, "tags": []}

(interventional_distribution)=
# Interventional distributions and graph mutilation with the do-operator
# Interventional distributions and graph mutation with the do-operator

:::{post} July, 2023
:tags: causal inference, do-operator, graph mutation
Expand Down Expand Up @@ -329,7 +329,7 @@ These code snippets are important because they define identical joint distributi

+++ {"editable": true, "slideshow": {"slide_type": ""}, "tags": []}

However, we are going to implement these using Bayesian causal DAGs with PyMC. Let's see how we can do this, then generate samples from them using `pm.sample_prior_predictive`. As we go with each DAG, we'll package the data up in `DataFrame`'s for plotting later, and also plot the graphviz representation of the PyMC models. You'll see that while these are a fraction more visually complex, they do actually match up with the causal DAGs we've specified above.
However, we are going to implement these using Bayesian causal DAGs with PyMC. Let's see how we can do this, then generate samples from them using `pm.sample_prior_predictive`. As we go with each DAG, we'll extract the samples for plotting later, and also plot the graphviz representation of the PyMC models. You'll see that while these are a fraction more visually complex, they do actually match up with the causal DAGs we've specified above.

```{code-cell} ipython3
---
Expand Down