Skip to content

docstring of county choropleth #2513

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 28, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
175 changes: 84 additions & 91 deletions packages/python/plotly/plotly/figure_factory/_county_choropleth.py
Original file line number Diff line number Diff line change
Expand Up @@ -478,8 +478,8 @@ def create_choropleth(
:param **layout_options: a **kwargs argument for all layout parameters


Example 1: Florida::
Example 1: Florida::

import plotly.plotly as py
import plotly.figure_factory as ff

Expand All @@ -506,106 +506,99 @@ def create_choropleth(
exponent_format=True,
)

Example 2: New England
```
import plotly.plotly as py
import plotly.figure_factory as ff
Example 2: New England::

import pandas as pd
import plotly.figure_factory as ff

NE_states = ['Connecticut', 'Maine', 'Massachusetts',
'New Hampshire', 'Rhode Island']
df_sample = pd.read_csv(
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
)
df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]
colorscale = ['rgb(68.0, 1.0, 84.0)',
'rgb(66.0, 64.0, 134.0)',
'rgb(38.0, 130.0, 142.0)',
'rgb(63.0, 188.0, 115.0)',
'rgb(216.0, 226.0, 25.0)']

values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()
fig = ff.create_choropleth(
fips=fips, values=values, scope=NE_states, show_state_data=True
)
py.iplot(fig, filename='choropleth_new_england')
```
import pandas as pd

Example 3: California and Surrounding States
```
import plotly.plotly as py
import plotly.figure_factory as ff
NE_states = ['Connecticut', 'Maine', 'Massachusetts',
'New Hampshire', 'Rhode Island']
df_sample = pd.read_csv(
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
)
df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]
colorscale = ['rgb(68.0, 1.0, 84.0)',
'rgb(66.0, 64.0, 134.0)',
'rgb(38.0, 130.0, 142.0)',
'rgb(63.0, 188.0, 115.0)',
'rgb(216.0, 226.0, 25.0)']

import pandas as pd
values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()
fig = ff.create_choropleth(
fips=fips, values=values, scope=NE_states, show_state_data=True
)
fig.show()

df_sample = pd.read_csv(
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
)
df_sample_r = df_sample[df_sample['STNAME'] == 'California']

values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()

colorscale = [
'rgb(193, 193, 193)',
'rgb(239,239,239)',
'rgb(195, 196, 222)',
'rgb(144,148,194)',
'rgb(101,104,168)',
'rgb(65, 53, 132)'
]
Example 3: California and Surrounding States::

fig = ff.create_choropleth(
fips=fips, values=values, colorscale=colorscale,
scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
binning_endpoints=[14348, 63983, 134827, 426762, 2081313],
county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
legend_title='California Counties',
title='California and Nearby States'
)
py.iplot(fig, filename='choropleth_california_and_surr_states_outlines')
```
import plotly.figure_factory as ff

Example 4: USA
```
import plotly.plotly as py
import plotly.figure_factory as ff
import pandas as pd

import numpy as np
import pandas as pd
df_sample = pd.read_csv(
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
)
df_sample_r = df_sample[df_sample['STNAME'] == 'California']

df_sample = pd.read_csv(
'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv'
)
df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(
lambda x: str(x).zfill(2)
)
df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(
lambda x: str(x).zfill(3)
)
df_sample['FIPS'] = (
df_sample['State FIPS Code'] + df_sample['County FIPS Code']
)
values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()

binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1))
colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef",
"#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce",
"#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c",
"#0b4083","#08306b"]
fips = df_sample['FIPS']
values = df_sample['Unemployment Rate (%)']
fig = ff.create_choropleth(
fips=fips, values=values, scope=['usa'],
binning_endpoints=binning_endpoints, colorscale=colorscale,
show_hover=True, centroid_marker={'opacity': 0},
asp=2.9, title='USA by Unemployment %',
legend_title='Unemployment %'
)
colorscale = [
'rgb(193, 193, 193)',
'rgb(239,239,239)',
'rgb(195, 196, 222)',
'rgb(144,148,194)',
'rgb(101,104,168)',
'rgb(65, 53, 132)'
]

fig = ff.create_choropleth(
fips=fips, values=values, colorscale=colorscale,
scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
binning_endpoints=[14348, 63983, 134827, 426762, 2081313],
county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
legend_title='California Counties',
title='California and Nearby States'
)
fig.show()

Example 4: USA::

import plotly.figure_factory as ff

py.iplot(fig, filename='choropleth_full_usa')
```
import numpy as np
import pandas as pd

df_sample = pd.read_csv(
'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv'
)
df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(
lambda x: str(x).zfill(2)
)
df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(
lambda x: str(x).zfill(3)
)
df_sample['FIPS'] = (
df_sample['State FIPS Code'] + df_sample['County FIPS Code']
)

binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1))
colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef",
"#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce",
"#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c",
"#0b4083","#08306b"]
fips = df_sample['FIPS']
values = df_sample['Unemployment Rate (%)']
fig = ff.create_choropleth(
fips=fips, values=values, scope=['usa'],
binning_endpoints=binning_endpoints, colorscale=colorscale,
show_hover=True, centroid_marker={'opacity': 0},
asp=2.9, title='USA by Unemployment %',
legend_title='Unemployment %'
)
fig.show()
"""
# ensure optional modules imported
if not _plotly_geo:
Expand Down