Skip to content

BUG: DataFrame.stack(..., dropna=False) with partial MultiIndex. #8855

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 2, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion doc/source/whatsnew/v0.15.2.txt
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,8 @@ Bug Fixes

- Bug where ``get_data_google``returned object dtypes (:issue:`3995`)


- Bug in ``DataFrame.stack(..., dropna=False)`` when the DataFrame's ``columns`` is a ``MultiIndex``
whose ``labels`` do not reference all its ``levels``. (:issue:`8844`)



Expand Down
8 changes: 5 additions & 3 deletions pandas/core/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -648,7 +648,9 @@ def _convert_level_number(level_num, columns):
# time to ravel the values
new_data = {}
level_vals = this.columns.levels[-1]
levsize = len(level_vals)
level_labels = sorted(set(this.columns.labels[-1]))
level_vals_used = level_vals[level_labels]
levsize = len(level_labels)
drop_cols = []
for key in unique_groups:
loc = this.columns.get_loc(key)
Expand All @@ -661,7 +663,7 @@ def _convert_level_number(level_num, columns):
elif slice_len != levsize:
chunk = this.ix[:, this.columns[loc]]
chunk.columns = level_vals.take(chunk.columns.labels[-1])
value_slice = chunk.reindex(columns=level_vals).values
value_slice = chunk.reindex(columns=level_vals_used).values
else:
if frame._is_mixed_type:
value_slice = this.ix[:, this.columns[loc]].values
Expand All @@ -685,7 +687,7 @@ def _convert_level_number(level_num, columns):
new_names = [this.index.name] # something better?

new_levels.append(frame.columns.levels[level_num])
new_labels.append(np.tile(np.arange(levsize), N))
new_labels.append(np.tile(level_labels, N))
new_names.append(frame.columns.names[level_num])

new_index = MultiIndex(levels=new_levels, labels=new_labels,
Expand Down
50 changes: 50 additions & 0 deletions pandas/tests/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -12266,6 +12266,56 @@ def test_stack_datetime_column_multiIndex(self):
expected = DataFrame([1, 2, 3, 4], index=eidx, columns=ecols)
assert_frame_equal(result, expected)

def test_stack_partial_multiIndex(self):
# GH 8844
def _test_stack_with_multiindex(multiindex):
df = DataFrame(np.arange(3 * len(multiindex)).reshape(3, len(multiindex)),
columns=multiindex)
for level in (-1, 0, 1, [0, 1], [1, 0]):
result = df.stack(level=level, dropna=False)

if isinstance(level, int):
# Stacking a single level should not make any all-NaN rows,
# so df.stack(level=level, dropna=False) should be the same
# as df.stack(level=level, dropna=True).
expected = df.stack(level=level, dropna=True)
if isinstance(expected, Series):
assert_series_equal(result, expected)
else:
assert_frame_equal(result, expected)

df.columns = MultiIndex.from_tuples(df.columns.get_values(),
names=df.columns.names)
expected = df.stack(level=level, dropna=False)
if isinstance(expected, Series):
assert_series_equal(result, expected)
else:
assert_frame_equal(result, expected)

full_multiindex = MultiIndex.from_tuples([('B', 'x'), ('B', 'z'),
('A', 'y'),
('C', 'x'), ('C', 'u')],
names=['Upper', 'Lower'])
for multiindex_columns in ([0, 1, 2, 3, 4],
[0, 1, 2, 3], [0, 1, 2, 4],
[0, 1, 2], [1, 2, 3], [2, 3, 4],
[0, 1], [0, 2], [0, 3],
[0], [2], [4]):
_test_stack_with_multiindex(full_multiindex[multiindex_columns])
if len(multiindex_columns) > 1:
multiindex_columns.reverse()
_test_stack_with_multiindex(full_multiindex[multiindex_columns])

df = DataFrame(np.arange(6).reshape(2, 3), columns=full_multiindex[[0, 1, 3]])
result = df.stack(dropna=False)
expected = DataFrame([[0, 2], [1, nan], [3, 5], [4, nan]],
index=MultiIndex(levels=[[0, 1], ['u', 'x', 'y', 'z']],
labels=[[0, 0, 1, 1], [1, 3, 1, 3]],
names=[None, 'Lower']),
columns=Index(['B', 'C'], name='Upper'),
dtype=df.dtypes[0])
assert_frame_equal(result, expected)

def test_repr_with_mi_nat(self):
df = DataFrame({'X': [1, 2]},
index=[[pd.NaT, pd.Timestamp('20130101')], ['a', 'b']])
Expand Down