Skip to content

BUG: remove unique requirement rom MultiIndex.get_locs (GH7106) #7107

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 13, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/release.rst
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ Improvements to existing features
the func (:issue:`6289`)
- ``plot(legend='reverse')`` will now reverse the order of legend labels for most plot kinds.
(:issue:`6014`)
- Allow multi-index slicers (:issue:`6134`, :issue:`4036`, :issue:`3057`, :issue:`2598`, :issue:`5641`)
- Allow multi-index slicers (:issue:`6134`, :issue:`4036`, :issue:`3057`, :issue:`2598`, :issue:`5641`, :issue:`7106`)
- improve performance of slice indexing on Series with string keys (:issue:`6341`, :issue:`6372`)
- implement joining a single-level indexed DataFrame on a matching column of a multi-indexed DataFrame (:issue:`3662`)
- Performance improvement in indexing into a multi-indexed Series (:issue:`5567`)
Expand Down
2 changes: 1 addition & 1 deletion doc/source/v0.14.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ You can use ``slice(None)`` to select all the contents of *that* level. You do n
As usual, **both sides** of the slicers are included as this is label indexing.

See :ref:`the docs<indexing.mi_slicers>`
See also issues (:issue:`6134`, :issue:`4036`, :issue:`3057`, :issue:`2598`, :issue:`5641`)
See also issues (:issue:`6134`, :issue:`4036`, :issue:`3057`, :issue:`2598`, :issue:`5641`, :issue:`7106`)

.. warning::

Expand Down
4 changes: 1 addition & 3 deletions pandas/core/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -2595,7 +2595,7 @@ def get_level_values(self, level):
unique = self.levels[num] # .values
labels = self.labels[num]
filled = com.take_1d(unique.values, labels, fill_value=unique._na_value)
values = unique._simple_new(filled, self.names[num],
values = unique._simple_new(filled, self.names[num],
freq=getattr(unique, 'freq', None),
tz=getattr(unique, 'tz', None))
return values
Expand Down Expand Up @@ -3556,8 +3556,6 @@ def get_locs(self, tup):
if not self.is_lexsorted_for_tuple(tup):
raise KeyError('MultiIndex Slicing requires the index to be fully lexsorted'
' tuple len ({0}), lexsort depth ({1})'.format(len(tup), self.lexsort_depth))
if not self.is_unique:
raise ValueError('MultiIndex Slicing requires a unique index')

def _convert_indexer(r):
if isinstance(r, slice):
Expand Down
41 changes: 41 additions & 0 deletions pandas/tests/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1356,6 +1356,47 @@ def f():
df.loc[(slice(None),[1])]
self.assertRaises(KeyError, f)

# not lexsorted
self.assertEquals(df.index.lexsort_depth,2)
df = df.sortlevel(level=1,axis=0)
self.assertEquals(df.index.lexsort_depth,0)
with tm.assertRaisesRegexp(KeyError, 'MultiIndex Slicing requires the index to be fully lexsorted tuple len \(2\), lexsort depth \(0\)'):
df.loc[(slice(None),df.loc[:,('a','bar')]>5),:]

def test_multiindex_slicers_non_unique(self):

# GH 7106
# non-unique mi index support
df = DataFrame(dict(A = ['foo','foo','foo','foo'],
B = ['a','a','a','a'],
C = [1,2,1,3],
D = [1,2,3,4])).set_index(['A','B','C']).sortlevel()
self.assertFalse(df.index.is_unique)
expected = DataFrame(dict(A = ['foo','foo'],
B = ['a','a'],
C = [1,1],
D = [1,3])).set_index(['A','B','C']).sortlevel()
result = df.loc[(slice(None),slice(None),1),:]
assert_frame_equal(result, expected)

# this is equivalent of an xs expression
result = df.xs(1,level=2,drop_level=False)
assert_frame_equal(result, expected)

df = DataFrame(dict(A = ['foo','foo','foo','foo'],
B = ['a','a','a','a'],
C = [1,2,1,2],
D = [1,2,3,4])).set_index(['A','B','C']).sortlevel()
self.assertFalse(df.index.is_unique)
expected = DataFrame(dict(A = ['foo','foo'],
B = ['a','a'],
C = [1,1],
D = [1,3])).set_index(['A','B','C']).sortlevel()
result = df.loc[(slice(None),slice(None),1),:]
self.assertFalse(result.index.is_unique)
assert_frame_equal(result, expected)


def test_per_axis_per_level_doc_examples(self):

# test index maker
Expand Down