Skip to content

BUG: Bug in setitem with loc on mixed integer Indexes (GH6546) #6548

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 5, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/release.rst
Original file line number Diff line number Diff line change
Expand Up @@ -200,6 +200,7 @@ Bug Fixes
- Regression from 0.13 in the treatmenet of numpy ``datetime64`` non-ns dtypes in Series creation (:issue:`6529`)
- ``.names`` attribute of MultiIndexes passed to ``set_index`` are now preserved (:issue:`6459`).
- Bug in setitem with a duplicate index and an alignable rhs (:issue:`6541`)
- Bug in setitem with loc on mixed integer Indexes (:issue:`6546`)

pandas 0.13.1
-------------
Expand Down
23 changes: 23 additions & 0 deletions pandas/core/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -555,6 +555,29 @@ def _convert_list_indexer(self, key, typ=None):
""" convert a list indexer. these should be locations """
return key

def _convert_list_indexer_for_mixed(self, keyarr, typ=None):
""" passed a key that is tuplesafe that is integer based
and we have a mixed index (e.g. number/labels). figure out
the indexer. return None if we can't help
"""
if com.is_integer_dtype(keyarr) and not self.is_floating():
if self.inferred_type != 'integer':
keyarr = np.where(keyarr < 0,
len(self) + keyarr, keyarr)

if self.inferred_type == 'mixed-integer':
indexer = self.get_indexer(keyarr)
if (indexer >= 0).all():
return indexer

from pandas.core.indexing import _maybe_convert_indices
return _maybe_convert_indices(indexer, len(self))

elif not self.inferred_type == 'integer':
return keyarr

return None

def _convert_indexer_error(self, key, msg=None):
if msg is None:
msg = 'label'
Expand Down
26 changes: 7 additions & 19 deletions pandas/core/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -911,20 +911,10 @@ def _reindex(keys, level=None):
# asarray can be unsafe, NumPy strings are weird
keyarr = _asarray_tuplesafe(key)

if is_integer_dtype(keyarr) and not labels.is_floating():
if labels.inferred_type != 'integer':
keyarr = np.where(keyarr < 0,
len(labels) + keyarr, keyarr)

if labels.inferred_type == 'mixed-integer':
indexer = labels.get_indexer(keyarr)
if (indexer >= 0).all():
self.obj.take(indexer, axis=axis, convert=True)
else:
return self.obj.take(keyarr, axis=axis)
elif not labels.inferred_type == 'integer':

return self.obj.take(keyarr, axis=axis)
# handle a mixed integer scenario
indexer = labels._convert_list_indexer_for_mixed(keyarr, typ=self.name)
if indexer is not None:
return self.obj.take(indexer, axis=axis)

# this is not the most robust, but...
if (isinstance(labels, MultiIndex) and
Expand Down Expand Up @@ -1064,11 +1054,9 @@ def _convert_to_indexer(self, obj, axis=0, is_setter=False):
objarr = _asarray_tuplesafe(obj)

# If have integer labels, defer to label-based indexing
if is_integer_dtype(objarr) and not is_int_index:
if labels.inferred_type != 'integer':
objarr = np.where(objarr < 0,
len(labels) + objarr, objarr)
return objarr
indexer = labels._convert_list_indexer_for_mixed(objarr, typ=self.name)
if indexer is not None:
return indexer

# this is not the most robust, but...
if (isinstance(labels, MultiIndex) and
Expand Down
13 changes: 13 additions & 0 deletions pandas/tests/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -835,6 +835,19 @@ def test_loc_setitem_frame(self):
expected = DataFrame(dict(A = Series(val1,index=keys1), B = Series(val2,index=keys2))).reindex(index=index)
assert_frame_equal(df, expected)

# GH 6546
# setting with mixed labels
df = DataFrame({1:[1,2],2:[3,4],'a':['a','b']})

result = df.loc[0,[1,2]]
expected = Series([1,3],index=[1,2],dtype=object)
assert_series_equal(result,expected)

expected = DataFrame({1:[5,2],2:[6,4],'a':['a','b']})
df.loc[0,[1,2]] = [5,6]
assert_frame_equal(df, expected)


def test_loc_setitem_frame_multiples(self):

# multiple setting
Expand Down