Skip to content

BUG: Fix pyarrow categoricals not working for pivot and multiindex #61193

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -638,6 +638,7 @@ Bug fixes
Categorical
^^^^^^^^^^^
- Bug in :func:`Series.apply` where ``nan`` was ignored for :class:`CategoricalDtype` (:issue:`59938`)
- Bug in :meth:`DataFrame.pivot` and :meth:`DataFrame.set_index` raising an ``ArrowNotImplementedError`` for columns with pyarrow dictionary dtype (:issue:`53051`)
- Bug in :meth:`Series.convert_dtypes` with ``dtype_backend="pyarrow"`` where empty :class:`CategoricalDtype` :class:`Series` raised an error or got converted to ``null[pyarrow]`` (:issue:`59934`)
-

Expand Down
2 changes: 1 addition & 1 deletion pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -452,7 +452,7 @@ def __init__(
if isinstance(values, Index):
arr = values._data._pa_array.combine_chunks()
else:
arr = values._pa_array.combine_chunks()
arr = extract_array(values)._pa_array.combine_chunks()
categories = arr.dictionary.to_pandas(types_mapper=ArrowDtype)
codes = arr.indices.to_numpy()
dtype = CategoricalDtype(categories, values.dtype.pyarrow_dtype.ordered)
Expand Down
29 changes: 29 additions & 0 deletions pandas/tests/reshape/test_pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

import pandas as pd
from pandas import (
ArrowDtype,
Categorical,
DataFrame,
Grouper,
Expand Down Expand Up @@ -2851,3 +2852,31 @@ def test_pivot_margins_with_none_index(self):
),
)
tm.assert_frame_equal(result, expected)

@pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
def test_pivot_with_pyarrow_categorical(self):
# GH#53051
pa = pytest.importorskip("pyarrow")

df = DataFrame(
{"string_column": ["A", "B", "C"], "number_column": [1, 2, 3]}
).astype(
{
"string_column": ArrowDtype(pa.dictionary(pa.int32(), pa.string())),
"number_column": "float[pyarrow]",
}
)

df = df.pivot(columns=["string_column"], values=["number_column"])

multi_index = MultiIndex.from_arrays(
[["number_column", "number_column", "number_column"], ["A", "B", "C"]],
names=(None, "string_column"),
)
df_expected = DataFrame(
[[1.0, np.nan, np.nan], [np.nan, 2.0, np.nan], [np.nan, np.nan, 3.0]],
columns=multi_index,
)
tm.assert_frame_equal(
df, df_expected, check_dtype=False, check_column_type=False
)
29 changes: 29 additions & 0 deletions pandas/tests/test_multilevel.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

import pandas as pd
from pandas import (
ArrowDtype,
DataFrame,
MultiIndex,
Series,
Expand Down Expand Up @@ -318,6 +319,34 @@ def test_multiindex_dt_with_nan(self):
expected = Series(["a", "b", "c", "d"], name=("sub", np.nan))
tm.assert_series_equal(result, expected)

@pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
def test_multiindex_with_pyarrow_categorical(self):
# GH#53051
pa = pytest.importorskip("pyarrow")

df = DataFrame(
{"string_column": ["A", "B", "C"], "number_column": [1, 2, 3]}
).astype(
{
"string_column": ArrowDtype(pa.dictionary(pa.int32(), pa.string())),
"number_column": "float[pyarrow]",
}
)

df = df.set_index(["string_column", "number_column"])

df_expected = DataFrame(
index=MultiIndex.from_arrays(
[["A", "B", "C"], [1, 2, 3]], names=["string_column", "number_column"]
)
)
tm.assert_frame_equal(
df,
df_expected,
check_index_type=False,
check_column_type=False,
)


class TestSorted:
"""everything you wanted to test about sorting"""
Expand Down