Skip to content

PERF: perf improvments in dtypes/ftypes methods (GH5968) #5970

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 16, 2014

Conversation

jreback
Copy link
Contributor

@jreback jreback commented Jan 16, 2014

closes #5968

-------------------------------------------------------------------------------
Test name                                    | head[ms] | base[ms] |  ratio   |
-------------------------------------------------------------------------------
frame_dtypes                                 |   0.2654 |  51.2140 |   0.0052 |
frame_wide_repr                              |  17.1947 | 525.7313 |   0.0327 |
-------------------------------------------------------------------------------
Test name                                    | head[ms] | base[ms] |  ratio   |
-------------------------------------------------------------------------------

Ratio < 1.0 means the target commit is faster then the baseline.
Seed used: 1234

Target [6a7bfc1] : PERF: perf improvments in dtypes/ftypes methods (GH5968)
Base   [2081fcc] : Merge pull request #5951 from y-p/PR_latest_ipython_rep_fixes

CLN: repr_html raises NotImplementedError rather then ValueError in qtconsole

@jreback
Copy link
Contributor Author

jreback commented Jan 16, 2014

@y-p 200x improvement good enough?
only 60x on repr though :)

@ghost
Copy link

ghost commented Jan 16, 2014

c'mon, admit it, this was silly.

Are there any unintended wins in vbench?

@jreback
Copy link
Contributor Author

jreback commented Jan 16, 2014

Not sure how many of these are real

-------------------------------------------------------------------------------
Test name                                    | head[ms] | base[ms] |  ratio   |
-------------------------------------------------------------------------------
frame_dtypes                                 |   0.2654 |  51.2140 |   0.0052 |
frame_wide_repr                              |  17.1947 | 525.7313 |   0.0327 |
series_constructor_ndarray                   |   0.0187 |   0.0390 |   0.4786 |
ctor_index_array_string                      |   0.0190 |   0.0384 |   0.4948 |
frame_constructor_ndarray                    |   0.0526 |   0.1007 |   0.5225 |
frame_from_series                            |   0.0987 |   0.1736 |   0.5684 |
frame_mult_eval                              |  10.8016 |  14.7330 |   0.7332 |
groupby_simple_compress_timing               |  24.9940 |  32.8907 |   0.7599 |
stat_ops_frame_sum_float_axis_0              |   0.6049 |   0.7937 |   0.7622 |
eval_frame_mult_python_one_thread            |  15.7140 |  20.6140 |   0.7623 |
frame_fancy_lookup_all                       |  16.2097 |  20.5374 |   0.7893 |
frame_multi_and                              |  21.8519 |  26.2030 |   0.8339 |
frame_add_python                             |  17.2369 |  20.5804 |   0.8375 |
frame_multi_and_st                           |  34.5450 |  40.8956 |   0.8447 |
groupby_last                                 |   3.2523 |   3.8413 |   0.8467 |
frame_mult_no_ne                             |   5.0566 |   5.9433 |   0.8508 |
reshape_pivot_time_series                    | 146.4167 | 168.8253 |   0.8673 |
strings_upper                                |   3.1710 |   3.6550 |   0.8676 |
groupby_first_float32                        |   3.1704 |   3.6493 |   0.8688 |
frame_fillna_many_columns_pad                |  12.5023 |  14.2899 |   0.8749 |
frame_add_st                                 |   5.1564 |   5.8897 |   0.8755 |
frame_mult                                   |   5.1339 |   5.8590 |   0.8763 |
groupby_last_float32                         |   3.3393 |   3.7950 |   0.8799 |
eval_frame_mult_one_thread                   |  10.8674 |  12.2437 |   0.8876 |
strings_title                                |   3.3987 |   3.7936 |   0.8959 |
packers_read_pack                            |   2.4300 |   2.7023 |   0.8992 |
timestamp_ops_diff1                          |   8.3516 |   9.2863 |   0.8993 |
frame_and_eval                               |   7.7877 |   8.6577 |   0.8995 |
query_datetime_series                        |  19.9830 |  22.1897 |   0.9006 |

jreback added a commit that referenced this pull request Jan 16, 2014
PERF: perf improvments in dtypes/ftypes methods (GH5968)
@jreback jreback merged commit c323daf into pandas-dev:master Jan 16, 2014
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

df.dtypes.values is not O(1) and repr(df) is therefore slow for large frames
1 participant