Skip to content

DOC: Enforce Numpy Docstring Validation for pandas.DataFrame.prod #58512

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -75,8 +75,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
-i "pandas.DataFrame.median RT03,SA01" \
-i "pandas.DataFrame.min RT03" \
-i "pandas.DataFrame.plot PR02,SA01" \
-i "pandas.DataFrame.prod RT03" \
-i "pandas.DataFrame.product RT03" \
-i "pandas.DataFrame.sem PR01,RT03,SA01" \
-i "pandas.DataFrame.skew RT03,SA01" \
-i "pandas.DataFrame.sparse PR01" \
Expand Down
68 changes: 67 additions & 1 deletion pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -11730,7 +11730,6 @@ def sum(
return result

@deprecate_nonkeyword_arguments(version="3.0", allowed_args=["self"], name="prod")
@doc(make_doc("prod", ndim=2))
def prod(
self,
axis: Axis | None = 0,
Expand All @@ -11739,6 +11738,73 @@ def prod(
min_count: int = 0,
**kwargs,
) -> Series:
"""
Return the product of the values over the requested axis.

Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.

.. warning::

The behavior of DataFrame.prod with ``axis=None`` is deprecated,
in a future version this will reduce over both axes and return a scalar
To retain the old behavior, pass axis=0 (or do not pass axis).

.. versionadded:: 2.0.0

skipna : bool, default True
Exclude NA/null values when computing the result.
numeric_only : bool, default False
Include only float, int, boolean columns. Not implemented for Series.

min_count : int, default 0
The required number of valid values to perform the operation. If fewer than
``min_count`` non-NA values are present the result will be NA.
**kwargs
Additional keyword arguments to be passed to the function.

Returns
-------
Series or scalar
The product of the values over the requested axis.

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
By default, the product of an empty or all-NA Series is ``1``

>>> pd.Series([], dtype="float64").prod()
1.0

This can be controlled with the ``min_count`` parameter

>>> pd.Series([], dtype="float64").prod(min_count=1)
nan

Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan
"""
result = super().prod(
axis=axis,
skipna=skipna,
Expand Down