Skip to content

ENH: enhancements to Panel.apply to enable arbitrary functions and multi-dim slicing (GH1148) #5850

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jan 15, 2014

Conversation

jreback
Copy link
Contributor

@jreback jreback commented Jan 4, 2014

closes #1148

A reproduction of the new docs section

Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will be a DataFrame.

Note Prior to 0.13.1 apply on a Panel would only work on ufuncs (e.g. np.sum/np.max).

In [120]: import pandas.util.testing as tm

In [121]: panel = tm.makePanel(5)

In [122]: panel

<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [123]: panel['ItemA']

                   A         B         C         D
2000-01-03  0.166882 -0.597361 -1.200639  0.174260
2000-01-04 -1.759496 -1.514940 -1.872993 -0.581163
2000-01-05  0.901336 -1.640398  0.825210  0.087916
2000-01-06 -0.317478 -1.130643 -0.392715  0.416971
2000-01-07 -0.681335 -0.245890 -1.994150  0.666084
[5 rows x 4 columns]

A transformational apply.

In [124]: result = panel.apply(lambda x: x*2, axis='items')

In [125]: result

<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [126]: result['ItemA']

                   A         B         C         D
2000-01-03  0.333764 -1.194722 -2.401278  0.348520
2000-01-04 -3.518991 -3.029880 -3.745986 -1.162326
2000-01-05  1.802673 -3.280796  1.650421  0.175832
2000-01-06 -0.634955 -2.261286 -0.785430  0.833943
2000-01-07 -1.362670 -0.491779 -3.988300  1.332168
[5 rows x 4 columns]

A reduction operation.

In [127]: panel.apply(lambda x: x.dtype, axis='items')

                  A        B        C        D
2000-01-03  float64  float64  float64  float64
2000-01-04  float64  float64  float64  float64
2000-01-05  float64  float64  float64  float64
2000-01-06  float64  float64  float64  float64
2000-01-07  float64  float64  float64  float64
[5 rows x 4 columns]

A similar reduction type operation

In [128]: panel.apply(lambda x: x.sum(), axis='major_axis')

      ItemA     ItemB     ItemC
A -1.690090  1.840259  0.010754
B -5.129232  0.860182  0.178018
C -4.635286  0.545328  2.456520
D  0.764068 -3.623586  1.761541
[4 rows x 3 columns]

This last reduction is equivalent to

In [129]: panel.sum('major_axis')

      ItemA     ItemB     ItemC
A -1.690090  1.840259  0.010754
B -5.129232  0.860182  0.178018
C -4.635286  0.545328  2.456520
D  0.764068 -3.623586  1.761541
[4 rows x 3 columns]

A transformation operation that returns a Panel, but is computing the z-score across the major_axis.

In [130]: result = panel.apply(lambda x: (x-x.mean())/x.std(), axis='major_axis')

In [131]: result

<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [132]: result['ItemA']

                   A         B         C         D
2000-01-03  0.509389  0.719204 -0.234072  0.045812
2000-01-04 -1.434116 -0.820934 -0.809328 -1.567858
2000-01-05  1.250373 -1.031513  1.499214 -0.138629
2000-01-06  0.020723 -0.175899  0.457175  0.564271
2000-01-07 -0.346370  1.309142 -0.912988  1.096405
[5 rows x 4 columns]

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the applied function.

In [133]: f = lambda x: (x-x.mean(1)/x.std(1))

In [134]: result = panel.apply(f, axis = ['items','major_axis'])

In [135]: result

<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [136]: result.loc[:,:,'ItemA']

                   A         B         C         D
2000-01-03  0.748886 -0.323319 -1.172352  0.370451
2000-01-04 -1.594544 -1.659365 -1.444732 -0.162764
2000-01-05  0.908832 -1.220236  0.237668  0.754405
2000-01-06 -1.024669 -0.081850 -0.792957  0.641960
2000-01-07 -0.884333 -0.472889 -1.474646 -0.671871
[5 rows x 4 columns]

This is equivalent to the following

In [137]: result = Panel(dict([ (ax,f(panel.loc[:,:,ax])) for ax in panel.minor_axis ]))

In [138]: result

<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [139]: result.loc[:,:,'ItemA']

                   A         B         C         D
2000-01-03  0.748886 -0.323319 -1.172352  0.370451
2000-01-04 -1.594544 -1.659365 -1.444732 -0.162764
2000-01-05  0.908832 -1.220236  0.237668  0.754405
2000-01-06 -1.024669 -0.081850 -0.792957  0.641960
2000-01-07 -0.884333 -0.472889 -1.474646 -0.671871
[5 rows x 4 columns]

jreback added a commit that referenced this pull request Jan 15, 2014
ENH: enhancements to Panel.apply to enable arbitrary functions and multi-dim slicing (GH1148)
@jreback jreback merged commit 78465c0 into pandas-dev:master Jan 15, 2014
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Panel apply to subframes in groupby
1 participant